

HTBLuVA Rankweil

Höhere Lehranstalt für Elektronik

und Technische Informatik

DIPLOMARBEIT
Gesamtprojekt

Universeller Intelligenter Wandschalter

Ausgeführt im Schuljahr 2022|2023 von: Betreuer/in:

Johannes Klapper 5BHEL Dipl. Ing. Gerald Bischof

Tim Kicker 5BHEL Dipl. Ing. Gerald Bischof

Rankweil, am 21.03.2023

Abgabevermerk:

DA original, am 30.03.2023 Dipl. Ing. Gerald Bischof

DA digital, am 30.03.2023 AV Dipl.-Ing. Leopold Moosbrugger

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite I

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbständig und ohne fremde

Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und die den

benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche erkenntlich gemacht

habe.

Rankweil, am 05.04.2023

...

Johannes Klapper

...

Tim Kicker

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite II

Abkürzung und Hinweise

DA Diplomarbeit

Client Programm, welches auf dem Endgerät des Nutzers ausgeführt
wird

Bridge Bindungsglied und Kontroll-Element des Systems

Smart-Switch Intelligenter Schalter anzusteuerndes Gerät

Last Vom Smart-Switch geschaltetes Gerät

BLE Bluetooth Low Energy

ESP Mikrocontroller ESP32-S3

DevKit Development Kit für Mikrocontroller ESP32-S3

ROM Read Only Memory

GPIO General Purpose Input/Output

SPI Serial Port Interface

JTAG Joint Test Action Group

UART Universal Asynchronus Receiver Transmitter

VS-Code Visual Studio Code

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite III

Inhaltsverzeichnis

1 DIPLOMARBEIT DOKUMENTATION .. 7

2 DIPLOMA THESIS DOCUMENTATION ... 9

3 ZUSAMMENFASSUNG .. 10

4 ABSTRACT .. 11

5 PLANUNGSGRUNDLAGEN .. 12
5.1 Planung im Voraus .. 12

5.1.1 Extreme Programming .. 12
5.1.2 Meilensteintrendanalyse ... 12

5.2 Erkenntnisse und Abweichungen ... 14
5.2.1 Hardware .. 14
5.2.2 Software ... 14

6 GRUNDLAGEN .. 15
6.1 Gesamtsystem ... 15

7 FINANZIELLER ASPEKT .. 16
7.1 Ausgaben .. 16

8 SMART-SWITCH .. 17
8.1 Allgemeines ... 17
8.2 Konzept ... 17

8.2.1 Vorgehensweise ... 17
8.3 ESP32-S3-Wroom-1 und ESP32-S3-DevKitC-1-N8R2 .. 18

8.3.1 Entwicklungsplatine .. 18
8.3.2 Mikrocontroller .. 18
8.3.2.1 Auswahlverfahren ... 18
8.3.2.2 Benötigte Funktionen .. 19

8.4 Smart-Switch Version 1 ... 20
8.4.1 Schaltung ... 20
8.4.2 ESP-Devkit Beschaltung ... 20
8.4.3 Temperatursensor .. 21
8.4.3.1 Anschluss ... 22
8.4.3.2 Programmierung ... 23
8.4.3.3 Temperaturberechnungen ... 25
8.4.4 Relais ... 26
8.4.5 JTAG-Schnittstelle .. 27
8.4.6 Layout... 28
8.4.7 Inbetriebnahme ... 29
8.4.7.1 Platine ... 29
8.4.7.2 Messungen ... 30

8.5 Smart-Switch Version 2 ... 33
8.5.1 Spezifikationen ... 33
8.5.2 Schaltung ... 33
8.5.2.1 Versorgung ... 33
8.5.2.1.1 Netzeil .. 34
8.5.2.1.2 Linearregler ... 35
8.5.2.1.3 Sicherung .. 35
8.5.2.1.4 Solid State Relais .. 36
8.5.2.2 ESP-Anschluss ... 37
8.5.2.2.1 Temperatursensor (JTAG-Anschluss) ... 37
8.5.2.2.2 USB-Schnittstelle und Test/UART Pins ... 38
8.5.2.2.3 Taster .. 39
8.5.2.2.4 Spannungsversorgung .. 40

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite IV

8.5.3 Layout... 41
8.5.3.1 Größenoptimierung ... 41
8.5.3.2 Thermische Berechnungen ... 43
8.5.3.2.1 Linearspannungsregler ... 43
8.5.3.2.2 Relais .. 44
8.5.3.2.3 Gesamtes Gehäuse .. 45
8.5.3.3 Leistungsoptimierung bzw. Management .. 46
8.5.3.3.1 Low-Power Mode .. 46
8.5.3.3.2 Absolute Maximum Ratings ... 47

8.6 Software .. 49
8.6.1 Espressif IDF .. 49
8.6.2 Arduino IDE .. 51

9 BRIDGE ... 52
9.1 Allgemeines ... 52
9.2 Hardware ... 52
9.3 Betriebssystem .. 53

9.3.1 Allgemeines .. 53
9.3.2 Raspbian .. 53
9.3.3 Installation .. 54

9.4 Software .. 54
9.4.1 Programmiersprache .. 55

9.5 Funktion ... 55
9.5.1 Start der Software (Main-Methode) ... 55
9.5.2 Globale Elemente ... 55
9.5.3 Vordefinierte Werte ... 56
9.5.4 Verwaltung der Einstellungen ... 57
9.5.4.1 Vergleich der Lösungswege .. 58
9.5.4.2 Realisierung .. 58
9.5.5 Schalterbezogene Elemente ... 59
9.5.6 Schalter .. 59
9.5.7 Modus... 59
9.5.8 Aufbewahrung der Schalter .. 60
9.5.9 Verwaltung der Modis ... 61

10 CLIENT .. 62
10.1 Grundidee .. 62
10.2 Konsolen-Applikation ... 62

10.2.1 Bridge aus Client-Sicht ... 62
10.2.2 Mode als Objekt .. 63
10.2.3 Schalter als Objekt.. 64
10.2.4 Vordefinierte Einstellungen ... 64
10.2.5 Management der Kommunikation ... 65
10.2.6 Speichern der Modis & Smart-Switches .. 67
10.2.7 Umgang der empfangenen Nachricht ... 67
10.2.8 Durchführung von Testungen ... 69

10.3 Client-Applikation (Version 1) .. 70
10.3.1 MAUI-Framework ... 70
10.3.2 Designmuster ... 72
10.3.2.1 Vergleich ... 72
10.3.2.2 Entscheidung .. 74
10.3.3 Aufbau .. 74
10.3.4 Ablauf nach Ausführung ... 75
10.3.5 Implementierung Model-View-ViewModel ... 76
10.3.5.1 BaseViewModel .. 76
10.3.5.2 Anzeige der Views .. 77
10.3.6 Informationen zur Bridge .. 77

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite V

10.3.7 Einstellungen der Schalter .. 80
10.3.8 Modifikation der Modis .. 81
10.3.9 Probleme .. 82

10.4 Client-Applikation (Version 2) .. 82
10.4.1 WPF-Framework .. 82
10.4.2 Aufbau .. 83
10.4.3 Design .. 83
10.4.4 Implementation der Commands .. 84
10.4.5 Implementierung MVVM ... 85
10.4.6 Informationen zur Bridge .. 85
10.4.7 Einstellungen der Schalter .. 87
10.4.8 Konfiguration der Modis .. 87

11 KOMMUNIKATION .. 89
11.1 Grundidee .. 89
11.2 Zwischen Bridge und Client ... 89

11.2.1 Nutzen .. 89
11.2.2 Wahl der Kommunikationsart .. 89
11.2.3 Codierung ... 89
11.2.3.1 Vergleich der Lösungswege .. 89
11.2.3.2 Definition ... 90
11.2.4 Anwendung .. 91
11.2.4.1 Beschreibung .. 91
11.2.4.2 Implementation Bridge .. 92
11.2.4.2.1 Network-Manager (Bridge) .. 92
11.2.4.2.2 Message-Manager ... 93
11.2.4.3 Implementation Client ... 95
11.2.4.3.1 Network-Manager (Client) .. 95

11.3 Zwischen Bridge und Schalter ... 97
11.3.1 Allgemeines .. 97
11.3.2 Mögliche Übertragungsarten ... 97
11.3.3 Bluetooth Low Energy (BLE) ... 99
11.3.3.1 Theorie .. 99
11.3.3.1.1 Verbindungsarten .. 99
11.3.3.1.2 GAP ... 100
11.3.3.1.3 GATT ... 101
11.3.3.2 Praxis .. 103

12 INSTALLATIONSANLEITUNG ... 104

12 DANKESWORTE ... 106

13 ABBILDUNGSVERZEICHNIS .. 107

14 FORTSCHRITTSBERICHT .. 109
14.1 Teammitglied 1 (Johannes Klapper) .. 109
14.2 Teammitglied 2 (Tim Kicker) .. 111

15 ANHANG .. 113
15.1 Schalter V1 .. 113

15.1.1 Schaltplan ... 113
15.1.2 Layout... 114
15.1.3 Stückliste .. 114

15.2 Schalter V2 .. 115
15.2.1 Schaltplan ... 115
15.2.2 Layout... 116
15.2.3 Stückliste .. 117
15.2.4 USB-Schnittstelle .. 118

15.3 Bridge .. 119

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite VI

15.3.1 Programmiersprache .. 119
15.3.2 Installation der benötigten Komponenten .. 121
15.3.3 Entwicklungsumgebung .. 122
15.3.3.1 Verwendete Tools ... 122
15.3.3.2 Einrichtung .. 124
15.3.4 Verwaltung der Einstellungen: Lösungswege ... 126
15.3.4.1 XML .. 126
15.3.4.2 JSON .. 127
15.3.4.3 CSV .. 127
15.3.4.4 YAML .. 128

15.4 Client ... 128
15.4.1 Programmiersprache .. 128
15.4.2 Plattform ... 129
15.4.2.1 Funktionsweise ... 130
15.4.2.2 App-Modelle .. 131
15.4.3 Installation der benötigten Komponenten .. 131

15.5 Kommunikation .. 134
15.5.1 Aufteilung des OSI-Modells .. 134
15.5.1.1 Speziell: Transmission Control Protocol .. 135

16 QUELLENVERZEICHNIS ... 136

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 7

1 DIPLOMARBEIT
DOKUMENTATION

Namen der Verfasser Johannes Klapper, Tim Kicker

Jahrgang | Schuljahr 5BHEL | 2022|2023

THEMA der Diplomarbeit Universeller intelligenter Wandschalter

Kooperationspartner b2 electronics

Aufgabenstellung

Es wird ein intelligenter Wandschalter entwickelt. Dessen Anwendungsbereiche inkludieren

Licht- und Heizungssteuerung. Die Steuerung erfolgt über ein Endgerät in Form verschiedener

individuell einstellbarer Modis oder über herkömmliches mechanisches Umschalten. Der

Einbau des Smart-Switches soll sich von dem, eines herkömmlichen Kippschalters nicht

unterscheiden.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 8

Individuelle Themenstellung im Rahmen des Gesamtprojektes

 Johannes Klapper Smart-Switch & Kommunikation

 Projektleitung, Erstellung der Smart-Switch Hardware, Firmware
für ESP, BLE-Kommunikation

 Tim Kicker Client, Bridge & Kommunikation

 Erstellung der Client- und Bridge-Applikationen, Entwurf und
Implementation der Protokolle, Allgemeine Kommunikation
inklusive BLE

Realisierung Die Realisierung erfolgt in Form eines funktionalen Aufbaus des
Gesamtsystems mittels einer nicht größengerechten
Versuchsplatine, sowie ein Prototyp in der geplanten
Originalgröße. Ebenfalls wird die Firmware auf allen
Komponenten implementiert.

Ergebnisse Es wurde die komplette Soft- bzw. Firmware für Client, Bridge
und Switch fertiggestellt. Die Hardware für den Smart-Switch
wurde erfolgreich umgesetzt. Das Gesamtsystem wurde
erfolgreich aufgebaut und ist funktional. Die finale Form des
Smart-Switches konnte zwar aufgebaut, aber aufgrund einiger
zeitlicher Verzögerungen nicht mehr in Betrieb genommen
werden.

Einsichtnahmen**) Archiv der HTL Rankweil,
www.diplomarbeiten.berufsbildendeschulen.at

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 9

2 DIPLOMA THESIS
DOCUMENTATION

Author(s) Johannes Klapper, Tim Kicker

Form | Academic year 5.Klasse | 2023

Diploma Thesis Topic Universal Intelligent Switch

Cooperation Partners b2 electronics

Assignment of Tasks

 Johannes Klapper Switch & Communication

 Project lead, implementation of switch hardware, firmware for
ESP, BLE communication

 Tim Kicker Client, Bridge & Communication

 creation of Client- and Bridge application, design and
implementation of communication protocols, general
communication

Idea Scheme Design The implementation takes place in form of a functional
prototype of the whole system in form of a larger experimental
board and in form of a prototype in size of the final, planned
product.

Construction Materiality The total soft- and firmware for Client, Bridge and Switch has
been implemented. The hardware for the switch was
successfully implemented as well. The whole system was built
and is functional. The original size hardware was built but could
not be taken into service.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 10

3 ZUSAMMENFASSUNG

A Motivation

Ein Problem, welches heutzutage eine immer größer werdende Rolle spielt, ist zweifelslos die

Energiekrise. Es gibt bereits viele Lösungsansätze im Smart Home Bereich, welche gute Arbeit

leisten, allerdings benötigen die meisten solcher Systeme großräumige Installationen und sind

deswegen auch recht teuer. Deshalb möchten wir die Idee eines „Universellen Intelligenten

Wandschalters“ in die Tat umsetzen, mit welchem bei minimalem Installationsaufwand bereits

viel Energie gespart werden kann. Ebenfalls ist die automatische Steuerung äußerst praktisch.

B Vorwissen

Es wurde Wissen aus allen fachspezifischen Unterrichtsgegenständen benötigt. Aus DIC kam

die Erfahrung mit Schnittstellen, Mikrocontrollern und deren Programmierung. Aus FSST kam

Vorwissen in C# und VS-Code zum Einsatz. Aus MTRS waren die nötigen Berechnungen bei

der Hardware bekannt und Wissen aus KSN wurde bei den Kommunikationen über BLE und

WLAN eingesetzt.

C Umsetzung

Hardwareseitig wurde ein herkömmlicher Wechselschalter so nachgestellt, dass er nicht nur

mechanisch, sondern auch per Mikroprozessor geschaltet werden kann. Auch wurde noch ein

Temperatursensor mit dem Mikroprozessor verbunden, um Richtwerte für die

Heizungssteuerung zu erhalten. Abschließend wurde die Energieversorgung des Smart-

Switchs über das Stromnetz sichergestellt, wobei Größe und Abwärme der Bauteile beachtet

werden mussten.

Die Software beinhaltet die Kommunikation zwischen uC und Bridge, sowohl als auch die

zwischen Client und Hub. Die einzelnen Teile benötigten jeweils eine eigene Firmware, diese

wurden entwickelt und implementiert. Ebenfalls musste eine grafische Oberfläche zur

benutzerfreundlichen Verwendung der Software erstellt werden.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 11

4 ABSTRACT

A Motivation

The energy crisis without a doubt is a major problem nowadays. Resources are running low

and energy preserving technologies are on the rise. A quite popular field with a lot of innovative

ideas are Smart Homes. A downside of most of these systems is that for their implementation

they require a high scale rewiring of the houses. Our System, the “Universal intelligent Switch”

solves this issue. Even with its easy installation, it can already save a lot of energy and is

practical as well.

B Previous Knowledge

To realize the project, we had to apply prior knowledge from all electronic specific subjects.

DIC provided us the Know-how to deal with and program Interfaces and Microcontrollers. From

FSST, we were already familiar with the development environments C# and VS-Code to some

extent. MTRS provided us with the knowledge to do Hardware and Temperature specific

calculations and last but not least through KSN we had previously gained a basic

understanding of wireless communication, especially Wi-Fi.

C Implementation

From a Hardware viewpoint, the task was to recreate a commonly known light switch, with the

added capability of being controlled by the Microprocessor. The temperature values were also

read to give a reference for the heating regulation. Lastly, the power supply had to be provided

via the grid. Temperature as well as size restrictions had to be taken into account.

On the Software side, the communications between uC and Bridge as well as between Bridge

and Client have to be set up. Furthermore, the Firmware for all of these components needs to

be created and implemented.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 12

5 PLANUNGSGRUNDLAGEN

5.1 Planung im Voraus

5.1.1 Extreme Programming

Extreme Programming ist eine Methode die in jeder

Produktentwicklung Anwendung findet. Die links stehenden Schritte

werden dabei so lange ausgeführt, bis ein funktionierendes

Endprodukt zustande kommt. Diese Methode wurde bei Hard- wie

Software angewandt. Bei der Hardware musste auf Design und

Entwicklung etwas mehr Fokus gelegt werden, da die Testung erst

nach dem Bestellen und Bestücken einer Platine möglich ist. In der

Software waren hingegen Planung und Testung im Vordergrund.

5.1.2 Meilensteintrendanalyse

Bei der Meilensteintrendanalyse werden im Voraus fixe Zwischenziele mit Datum festgelegt

die erreicht werden sollen. Meilensteine bestehen wiederum aus mehreren Arbeitsschritten,

welche alle erledigt werden müssen. Dies hilft das Projekt zu unterteilen, die Übersicht zu

fördern und bietet eine zeitliche Reverenz, an der man sich orientieren kann.

Software: 1. Kommunikation zwischen App u. Mikroprozessor funktioniert (18.11.2022)

2. Firmware fertiggestellt (18.1.2023)

3. Client-Applikation (V2) für Laptop fertiggestellt (28.2.2023)

4. Gesamtsystem fertiggestellt (31.3.2023)

Hardware: 1. Energieversorgung für Mikroprozessor fertiggestellt (2.11.2022)

2. Smart-Switch physisch wie über Mikrocontroller Schaltbar (23.12.2022)

3. Gehäuse und Wärmetechnik fertiggestellt (28.2.2023)

4. Gesamtsystem fertiggestellt (31.3.2023)

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 13

A
b

b
ild

u
n

g
 1

:
P

ro
je

k
tp

la
n

 G
a
n

tt
 C

h
a

rt

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 14

5.2 Erkenntnisse und Abweichungen

Eine Erkenntnis, die sich bereits früh einstellte, ist es, dass manche Arbeitsschritte sich

aufgrund unvorhergesehener Fehler oder Probleme extrem verlängern. Im Kontrast dazu kann

bei einem fehlerfreien Ablauf wiederum viel Zeit eingespart werden. Die vorausgehende

Planung hat also eine sehr hohe Relevanz, um schnell voranzukommen. Zur Planung wurde

weitgehendst die Meilensteintrendanalyse angewendet, ebenfalls wurde bei der Umsetzung

die Extreme Programming Methode verwendet, auf diese hätte im Vorfeld allerdings mehr

Fokus gelegt werden sollen. Speziell die Planungsphase kam nämlich etwas zu kurz.

5.2.1 Hardware

Der grundsätzliche Plan konnte umgesetzt werden, allerdings gibt es einigen Raum für

Verbesserung in Hinsicht auf zukünftige Projekte.

Der wohl größte Fehler war die mangelnde Vorbereitung bei der Bauteilauswahl. Genauere

Recherche im Vorfeld hätte zweifellos eine große Zeitersparnis eingebracht, da jedes nicht

optimal gewählte Bauteil mit einem viel größeren Aufwand in die Schaltung integriert werden

muss und bei der Programmierung erneut für Probleme sorgen kann. Ein Beispiel für ein

solches Bauteil ist der Temperatursensor. Um dies zu vermeiden hätte Extreme Programming

weitgehender eingesetzt werden müssen.

Bei der Fertigstellung der Schaltung sollte also bereits die genaue Programmierung für jedes

Bauteil feststehen. Die Leistungsanforderungen der Bauteile müssen selbstverständlich

ebenfalls im Voraus berechnet bzw. berücksichtigt werden.1

5.2.2 Software

Der geplante Ablauf konnte anfangs gut verfolgt werden. Jedoch verschob sich der Zeitplan

durch den Framework-Wechsel nach hinten (Siehe Software->MAUI).

Die gelernte Erkenntnis liegt darin, immer nur bereits getestete UI-Frameworks zu

verwenden.

1 Vgl. Asana.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 15

6 GRUNDLAGEN

6.1 Gesamtsystem

Das System ist folgendermaßen aufgebaut:

Der Client, beispielsweise ein Laptop, ist das Endgerät, das der Benutzer unseres Systems

bedient. Die Bridge dient als zentrales Rechenzentrum, welches die Anfragen an die einzelnen

Smart-Switches weiterleitet. Der Switch selbst ist für das Schalten der Last und das Auslesen

der Temperatur zuständig.

Abbildung 2: Gesamtsystem Blockschaltbild detailliert

Die Funksignale, Wlan und BLE sind im Blockschaltbild grün gekennzeichnet. Die einzelnen

Teile unter Bridge und Client werden fertig gekauft und müssen nicht selbst gebaut werden.

Die weiteren Sensoren sind eine Erweiterungsmöglichkeit für das Projekt, die während der

Diplomarbeit noch nicht umgesetzt werden.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 16

7 FINANZIELLER ASPEKT

7.1 Ausgaben

Um das Projekt realisieren zu können, mussten Bauteile und Leiterplatten gekauft werden. Der

Großteil des benötigten Geldes wurde von der Partnerfirma finanziert, der Rest privat bezahlt.

Zu guter Letzt hat die HTL Rankweil ebenfalls einige Bauteile gesponsort. Nicht vorrätige

Bauteile wurden aufgrund der Lieferzeiten selbst bestellt und in Folge auch selbst bezahlt.

Dabei wurde gelernt, dass der Preis der meisten Einzelbauteile sehr gering ist, der genaue

Preis spielt deshalb bei kleinen Stückzahlen fast keine Rolle. Der Fokus sollte auf einzelne

teure Bauteile gelegt werden (z.B. Relais). Ebenfalls ist der Preis von fast allen Bauteilen recht

billig im Vergleich zu den Kosten eines Fehlers in einem Layout oder eines schlecht gewählten

Bauteils. Dabei muss man nämlich mit preislichen als auch zeitlichen Bußen rechnen.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 17

8 SMART-SWITCH

8.1 Allgemeines

Unter „Smart-Switch“ verstehen wir in unserem Projekt die Komponente, die in eine

Elektroinstallation statt einem Lichtschalter verbaut werden kann. Der Smart-Switch selbst

muss einige Aufgaben und Kriterien erfüllen. Er soll vor Ort mittels eines Tasters bedient

werden oder über Bluetooth ferngesteuert werden können. Er muss die Temperatur aus einem

Sensor auslesen und diese an die Bridge weiterleiten. Ebenfalls muss er als BLE-Server

fungieren, damit er mit der Bridge kommunizieren kann. Um eine angeschlossene Last wie

eine Beleuchtung ein- oder ausschalten zu können, sollte er hohe Ströme aushalten damit

möglichst viele unterschiedliche Lasten gesteuert werden können. Das Schalten selbst

geschieht dabei je nach Programmierung des Clients. Übergeordnet kann aber der Smart-

Switch natürlich auch mechanisch, wie bei einem herkömmlichen Lichtschalter, geschalten

werden. Zu guter Letzt muss der Smart-Switch in eine Buchse, in Normgröße der EU, Platz

haben und möglichst einfach mit einem normalen Schalter austauschbar sein.2

8.2 Konzept

8.2.1 Vorgehensweise

Es wurden zwei unterschiedliche Smart-Switches gebaut. Die erste Version diente für

Testzwecke, deshalb musste auf die Größe nicht geachtet werden. Die erste Schaltung wurde

über die USB-Programmierschnittstelle versorgt, daher konnte auf ein Netzteil noch völlig

verzichtet werden. Es wurden viele Messpunkte und Ausgabemöglichkeiten angebracht, um

die Funktionalität möglichst einfach überprüfen zu können.

Die zweite Version des Smart-Switches ist dann schon die finale Form, es wurden nur noch

minimale Testmöglichkeiten, in Form einer LED und 4 Test Pins, vorgesehen. Ebenfalls

wurden einige Bauteile durch leistungstechnisch effizientere Alternativen ersetzt. Es war

geplant, dass der grundsätzliche Aufbau gleich ist, und so sollte das Gesamtsystem nach der

erfolgreichen Inbetriebnahme der 1. Version, problemlos mit der 2. Version austauschbar sein.

Allerdings gab es hier noch Probleme durch fehlerhaft umgesetzte Bauteile. Mit dieser

Vorgehensweise sollte ebenfalls verhindert werden, dass wichtige Spezifikationen übersehen

werden, da das System ansonsten nicht funktioniert.

2 Vgl. Elektrotechnische Normung in Österreich.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 18

8.3 ESP32-S3-Wroom-1 und ESP32-S3-DevKitC-1-N8R2

8.3.1 Entwicklungsplatine

Für das Projekt wird die ESP32-S3-DevKitC-1-N8R2 Entwicklungsplatine verwendet. Der

darauf verbaute uC ist der ESP32-S3 Wroom1. Dieser benötigt eine 3,3V

Spannungsversorgung. Weiters verfügt die Platine über eine 5V Spannung, welche von

einigen Peripherie Bauteilen wie dem Relais benötigt wird. Die 5V Spannung wird über die

USB- und UART-Schnittstellen geliefert, welche ebenfalls für das Debugging und das

Programmieren verwendet werden. Ein Vorteil der Entwicklungsplatine sind die vielen

Kontrolloptionen z.B. eine rote Power-On LED, eine RGB LED und zwei Tasten. Auch sehr

praktisch sind die mit Füßen versehenen GPIO-Pins, sie sind bei Testungen einfach

zugänglich und übersichtlich angeordnet.

8.3.2 Mikrocontroller

Der Mikrocontroller selbst, hat weder das DevKit noch die Bluetooth Antenne angeschlossen.

Wird später vom Mikrocontroller oder dem ESP gesprochen, ist also eigentlich die Version

ESP32-S3-DevKitC-1-N16R2 gemeint.

8.3.2.1 Auswahlverfahren

 ESP32-S3 ESP32-C3 ESP32-8266 WiPy-3.0

Größe [mm] 18x25,5 16,6x13,2 5x5 15,3x20

I2C bzw. SPI Beides beides beides beides

BLE-Version BLE (5.2) BLE (5.0) - BLE (4.2)

Anzahl GPIOs 36 22 17 25

Antenne inkl. Ja Ja - Nein

Rom vorhanden Ja Ja Ja Nein

Abbildung 3: ESP DevKit

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 19

Der ESP8266 ist der einzige Baustein bei dem Vorwissen vorhanden ist. Da dieser aber kein

Bluetooth unterstützt, war dieser für unser Projekt leider unbrauchbar. Der WiPy kommuniziert

auf dem älteren BLE-Standard und darüber hinaus hätte die Antenne separat bestellt und

angebracht werden müssen.3 Da er ansonsten auch keine signifikanten Vorteile bringt wurde

er ebenfalls nicht gewählt. ESP32-S3 bzw. C3 erfüllen alle nötigen Spezifikationen. Es wurde

der S3 aufgrund des neueren BLE-Standards gewählt. Allerdings hätte der doch

entscheidende Aspekt der Größe bei der Auswahl genauer untersucht werden können.4 5

8.3.2.2 Benötigte Funktionen

Auf der Entwicklungsplatine sind einige dieser Funktionen (siehe unten) bereits implementiert

(C). Ebenfalls gibt es interne Funktionen, abgesehen von der mehr als ausreichenden

grundsätzlichen Rechenleistung, welche für das Projekt essenziell sind (I). Diese Funktionen

sind bereits programmiert und es müssen keine Änderungen vorgenommen werden. Zu guter

Letzt gibt es noch die Peripherie-Funktionen, diese benötigen zusätzliche GPIO-Pins.

Funktionen

• Kommunikation mit dem Temperatur Sensor über SPI (5 GPIOs)

• Einlesen des Signals des Tasters (1GPIO)

• Steuerung der Relais (1-2 GPIOs)

• Anschluss mindestens einer Programmier-Schnittstelle (2 GPIOs, C)

• Energieversorgung mit nötiger Beschaltung (C)

• Pulldown des Enable Pins (C)

• Ground (C)

• ROM (I)

• BLE (I)

Ein ROM (Flash) muss unbedingt vorhanden sein, da ansonsten die bestehende

Programmierung verloren geht, sobald der ESP vom Programmiergerät abgeschlossen wird.

Dadurch wäre der Smart-Switch komplett nutzlos, da er natürlich nicht programmiert werden

darf, während er an der Netzspannung hängt. BLE ist für die Kommunikation mit der Bridge

ebenfalls unabdingbar. Siehe Kapitel 11.3.3.1.1.

3 Vgl. WiPy 3.0.
4 Vgl. ESP8266 – Mikrocontroller.net.
5 Vgl. Helmut (2021).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 20

8.4 Smart-Switch Version 1

Für die erste Generation der Leiterplatte wurde ein Entwicklungsboard des ESP-Prozessors

(ESP Devkit) eingesetzt, um in einem frühen Stadium des Projekts Erfahrung mit den

Komponenten sammeln zu können.

Die folgende Erläuterung der Schaltung fällt stellenweise etwas kürzer aus, weil manche

Komponenten auch in der Version 2 vorkommen und im entsprechenden Teil ausführlicher

erklärt sind.

8.4.1 Schaltung

Alle in der Schaltung (siehe Kapitel 15.1.1) verbauten Kondensatoren dienen der

Spannungsstabilisierung. Dazu wurde mit Ausnahme von C6 und C7 eine Kapazität von 100nF

verwendet. Diese wiederum dienen als Schutz gegen größere Störungen bei den

Eingangsspannungen und sind deshalb von 3,3V und 5V auf Ground geschaltet. Sie haben

einen Wert von 100uF.

8.4.2 ESP-Devkit Beschaltung

Die Widerstände R1 bis R4 werden den LEDs jeweils vorgeschalten, um den Stromfluss weit

genug zu reduzieren, sodass er im Anwendungsbereich der LEDs liegt. Bei LEDs 2 bis 4 hätte

das theoretisch auch über die Software geregelt werden können, so kann aber auch bei

falschen Softwareeinstellungen (zu hoher Duty-Cycle) nichts passieren.

Abbildung 4: ESP DevKit Anschluss V1

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 21

In Abbildung 5 sind die Anschlüsse aller Datenleitungen an das Devkit zu sehen. Die Switch

Enables sowie die LEDs 2 bis 4 wurden dabei auf beliebige GPIOs gelegt, die keine spezielle

benötigte bereits definierte Funktion haben. Die 4 MTxx Signale sind an der vordefinierten

JTAG-Schnittstelle des DevKits angeschlossen, die GPIOs 39 bis 42. Das gleiche gilt für die

4 Signale der SPI, hier werden GPIOs 35 bis 37 als Datenleitungen verwendet und GPIO 47

als Clock.6

8.4.3 Temperatursensor

Für die Messung der Temperatur ist ein Sensor erforderlich.

Auswahlverfahren

Der Sensor sollte für die Anwendung möglichst genau sein. In der folgenden Tabelle ist eine

Übersicht einiger Möglichkeiten aufgelistet.

 TMP126 TMP114 ADT 7411 MCP98224

Größe [mm] 1,85x1,80 0,76x0,76 4,9x6 2x3

Temperatur

Bereich [°C]

20 bis 30

-20 bis 80

-10 bis 80 -40 bis 120 75 bis 95

-40 bis 120

Genauigkeit [°C] +-0,25

+-0,3

+-0,3 +-0,5 +-0,2

+-1

Schnittstelle SPI (3 Pin) I2C SPI und I2C I2C

Hersteller TI TI Analog Devices Microchip Tech

Der MCP98224 ist für andere Anwendungen bei hoher Wärme konzipiert, deshalb sind seine

Toleranzen erst bei höheren Temperaturen gut. Der ADT 7411 hat mehrere Schnittstellen was

praktisch sein kann, falls zusätzliche Sensoren hinzugefügt werden, er ist jedoch nicht allzu

genau. Die TMPs 114 und 126 sind sehr ähnlich, allerdings hat der Tmp126 einen etwas

größeren Footprint was bei diesen kleinen Größen das Anlöten erleichtert. Ebenfalls ist seine

Toleranz in unserem Messbereich noch eine Spur besser, deshalb wurde er gewählt.7

6 Vgl. ESP32-S3-DevKitC-1 v1.1 - ESP32-S3 - — ESP-IDF Programming Guide latest documentation.
7 Vgl. TMP126NDCKR Texas Instruments | Mouser.

Abbildung 5: ESP SPI und JTAG-Schnittstellen

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 22

8.4.3.1 Anschluss

In Abbildung 6 ist die Beschaltung des Temperatursensors zu sehen. Die Signale der

Schnittstelle können an den Test Pins abgegriffen werden. So können bei Schwierigkeiten bei

der Inbetriebnahme schnell die Fehler ausfindig gemacht werden.

Bei der Auswahl des Sensors wurde nicht berücksichtigt, dass es nur eine Datenleitung gibt,

was die SPI-Übertragung etwas komplizierter als notwendig macht.

Der Temperatur Sensor besitzt eine Sonderform einer SPI . Daten Ein- und Ausgang sind

dabei auf denselben Pin geschaltet, es handelt sich also um eine 3 Pin SPI. Die

standardmäßige, in den ESP-Bibliotheken vordefinierte, Programmierung für die SPI kann

deshalb nicht angewendet werden. Stattdessen werden die Pins manuell angesteuert.8

8 Vgl. SPI - Arduino Reference.

Abbildung 6: Temperatur Sensor Anschluss V1

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 23

8.4.3.2 Programmierung

In der untenstehenden Grafik ist die Befehlsstruktur abgebildet, mit welcher der Temperatur

Sensor angesteuert werden muss.

Abbildung 7: Befehlsstruktur Temperatur Sensor

Der CRC (Cyclic Redundancy Check) ist optional und wird mit dem CRC Enable Bit ein- oder

ausgeschaltet. Da die Kommunikation über einen möglichst langen Zeitraum fehlerfrei

ablaufen muss, macht es Sinn diesen Check durchzuführen. Die Länge des CRC-Checks ist

minimal eingestellt. Mit dem Auto Increment Bit wird eingestellt, ob das folgende Kommando

kontinuierlich oder einmalig ausgeführt werden soll. Das Read/Write Bit ist selbsterklärend und

die Sub-Adressen können im Datenblatt des Tmp126 unter Register nachgeschaut werden.

Verwendete Register

Bei den Read Befehlen stehen in der Datenspalte, die Positionen der für uns Relevanten

Informationen.

 Sub-Adresse Read/Write

(Bit)

Auto Increment

(Bit)

Daten

Konfiguration 03h Write (0) Ein (1) 0086h

Temperatur

Obergrenze

06h Write (0) Ein (1) 1E80h

Alert enable 04h Write (0) Ein (1) 0014h

Temperatur

lesen

00h Read (1) Aus (0) FFFCh

Alert lesen 02h Read (1) Ein (1) 0090h

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 24

Programmablauf

Der T-High Alert wird ausgegeben, sobald die gemessene Temperatur eine kritische Höhe

erreicht (Siehe Kapitel 8.5.3.2). Wird ein T-High Alert ausgelesen muss der ESP in den

Schlafmodus versetzt werden. Ansonsten könnte der Smart-Switch aufgrund einer

Überhitzung kaputt gehen.

Dabei muss natürlich beachtet werden, dass dadurch die Last vorübergehend keinen Strom

bekommt. Das T High muss also möglichst hoch angesetzt werden, damit eine solche

Ausnahme wirklich nur im Notfall eintritt.

𝑇𝐺𝑀𝑎𝑥 = 60°𝐶 … Maximale Ambient Temperatur

Beispielbefehl

Das ist der kontinuierliche Temperatur Lese Befehl, dabei wird hier ein 3-stelliges CRC-Bit

mitversandt. Sollte es also zu Kommunikationsschwierigkeiten kommen, so wird beim Alert

Pin sofort der CRC Alert geworfen, wird dieser ausgelesen wird eine neue Übertragung

initialisiert.

Abbildung 8: Flussdiagramm Temperatur Sensor

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 25

8.4.3.3 Temperaturberechnungen

Aufgrund der möglichst einfachen Installation befindet sich der Temperatur Sensor ebenfalls

auf der Leiterplatte. Da einige Teile sich doch recht stark erwärmen ist in davon auszugehen,

dass die Umgebungstemperatur im Gehäuse um etwas höher ist als die Außentemperatur.

Um nun als von der gemessen Temperatur auf die Umgebungstemperatur zu gelangen,

müssen die thermischen Berechnungen berücksichtigt werden (Siehe Kapitel 8.5.3.2.1).

Um die Temperaturen unterscheiden zu können wird die Temperatur im Gehäuse als Ambient

definiert und die außerhalb als Umgebung.

𝛥𝑇𝑈,𝐴 = 13,51 𝐾 … maximale Temperaturänderung Umgebung zu Ambient

Die Temperatur im Gehäuse kann bei maximalem Stromfluss über den

Netzspannungsbereich, bis zu 13,5 °C höher werden als die der Umgebung. Da es keine

Messmöglichkeit für die Netzspannung gibt muss eine momentane Erwärmung im Gehäuse

approximiert werden.

𝛥𝑇𝑈,𝐴_𝑁𝑜𝑟𝑚 = 4,54 𝐾 … gewöhnliche Temperaturänderung Umgebung zu Ambient

Von der gemessenen Temperatur müssen also 4,54 °C abgezogen werden, um auf die

Umgebungstemperatur zu gelangen.

Für ein finales Produkt wäre es zweckmäßig im Gehäuse gute Lüftungsöffnungen

anzubringen, um die Erwärmung im Gehäuse gegenüber der Umgebung möglichst gering zu

halten.

Weiterführend erfolgt die Ausgabe der Temperatur nicht in °C sondern das LSB (14tes Bit)

entspricht 0,03125°C. Somit entspricht das 9. Bit des Datenworts genau einem Grad. Unten

die Rechnung von Bits zu °C.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 26

8.4.4 Relais

Allgemeines

Relais können als elektrisch gesteuerte Schalter verwendet werden, um den Stromfluss in

einer Schaltung zu erlauben oder zu unterbrechen. Ein Relais besteht aus Schaltkontakt, der

durch eine Spule betätigt wird. Wenn ein Strom durch die Spule fließt, erzeugt dies ein

Magnetfeld, das den Schaltkontakt anzieht und den Stromkreis schließt. Schaltet man das

Schaltsignal ab öffnet sich der Kontakt wieder. Ein Problem mit dem mechanischen

Schaltkontakt ist es, dass er empfindlich auf hohe Leistungen reagieren kann, es kann

passieren, dass er geschlossen hängen bleibt.9

Anwendung

In der ersten Version wurde das Relais V23057 verwendet.10 Die schaltbaren Anschlüsse

wurden dabei auf 3 Pins geführt (rechte Seite). Zur Testung können ein Netzteil und eine Last,

beispielsweise eine LED verwendet oder auch einfach ein Ohmmeter verwendet werden.

Zusätzlich ist beim Schalten des Relais ein Klicken zu hören. Die Freilaufdiode D6 muss

angebracht werden damit der Strom, der nach dem Abschalten aufgrund der Induktivität des

Relais noch fließt, nicht abrupt unterbrochen wird, sondern bis zur Entladung der Spule weiter

fließen kann. Ansonsten würde sich die Spannung am Transistor erhöhen, bis es zu einem

Durchbruch käme. Der Transistor wird vom ESP über den Vorwiderstand R5 angesteuert. Die

unten dargestellte Schaltung ist auf dem Board zwei Mal angebracht. Dadurch kann auch das

Verhalten eines Doppelwippenschalters nachgestellt werden.

.

9 Vgl. Relais • Was ist ein Relais? Wie funktioniert ein Relais?
10 Vgl. 3-1393215-5 . - Leistungsrelais, SPDT, 5 VDC, 8 A, V23057, Durchsteckmontage.

Abbildung 9: Kartenrelais V1

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 27

8.4.5 JTAG-Schnittstelle

Die JTAG-Schnittstelle wird angebracht, um mögliche Alternativen zur ESP-Programmierung

zu erforschen. Weiterführend kann sie ansonsten auch zum Debuggen verwendet werden.

Nach einigen Tests und Recherche stellt sich die USB-Schnittstelle aber als einfachere

Variante heraus. Zum Debuggen eignet sich ebenfalls eine andere Schnittstelle nämlich die

UART besser.11

11 Vgl. JTAG Debugging - ESP32-S3 - — ESP-IDF Programming Guide latest documentation.

Abbildung 10: JTAG Schnittstelle V1

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 28

8.4.6 Layout

Das Layout des Versuchsboards hat sehr gut funktioniert. Es konnten alle Schaltungsteile

erfolgreich in Betrieb genommen werden.

Ein Fehler des Layouts war lediglich, dass die Abstände zwischen Netzspannung und den zum

Prozessorteil führenden Leiterbahnen zu gering waren. Ebenfalls darf die Leiterbahn

keinesfalls durch den Sperrbereich verlaufen. Die Fehler sind in Abbildung 12 gekennzeichnet.

Da kein Platzproblem vorhanden war, wäre die Lösung einfach gewesen in dem man die

Relais‘ weiter nach oben versetzt hätte.

Weiters hätte die !Alert Leiterbahn auf der Rückseite geführt werden müssen

(Durchkontaktierungen). Hier, in Abbildung 12, nicht schön gelöst.

Abbildung 12: Temperatur Sensor suboptimaler Anschluss V1

Abbildung 11: Netzspannungsbereich Verletzung V1

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 29

8.4.7 Inbetriebnahme

8.4.7.1 Platine

Bis auf einige Probleme mit den Relais Lieferungen und anfänglichen Schwierigkeiten mit dem

Temperatursensor, lief die Inbetriebnahme der Platine ziemlich reibungslos ab.

Zuerst wurden Relais für das Schalten der Netzspannung bestellt, welche für die finale

Anwendung notwendig sind. Für die Testung sind sie allerdings ungeeignet. Bei der Bestellung

der Relais niederer Spannung gab es ein Lieferproblem und es wurde eine Version der Relais

mit falschem Footprint geliefert (in Abbildung 13 zu sehen). Die Tests wurden deshalb mit

diesem Relais durchgeführt. Details zum Relais kann man im dazugehörigen Datenblatt

finden, siehe CD.

Abbildung 13: Schalter V1

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 30

8.4.7.2 Messungen

Die Funktionalität der Platine konnte mithilfe folgender Messungen und Tests bestätigt werden.

Für die Tests wurden meistens die LEDs zur Ausgabe von Signalen genutzt. Die Messungen

wurden mit einem Multimeter und einem Analog Discovery durchgeführt.

Testung der Grundfunktionen

Dass die Spannungsversorgung funktioniert, konnte mithilfe der Power-On LED (D1) bestätigt

werden. Mithilfe des kleinen nachfolgenden Testprogramms werden nacheinander die

verschiedenen LEDs ein- und ausgeschaltet. Ein Relais wird ebenfalls im Sekundentakt

umgeschaltet. Beide dieser Funktionen haben fehlerlos funktioniert.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 31

Strommessung

Die Platine wird über den USB-Anschluss versorgt. Die 5V Leitung der USB-Verbindung wird

am Kabel aufgetrennt. Dazwischen wird ein Amperemeter geschalten. Die Platine benötigte

während der Programmierung 121,2 mA (rechtes Bild). Während des laufenden Programms,

Datenaustausch via BLE, variiert der Strom recht stark in einem Bereich von 65 – 95 mA. Das

liegt unter anderem an dem wiederholten Advertisen und der Kommunikation. Es kann

näherungsweise ein linearer Strom von 80 mA angenommen werden. Der Grund für den

niedrigen Stromverbrauch, ist sowohl die geringe Umgebungstemperatur als auch die nicht

vollständige Auslastung der Platine. Damit ist gemeint, dass nicht alle benötigten Funktionen

verwendet werden.

Abbildung 14: Stormmessung DevKit BLE

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 32

SPI-Schnittstelle ausmessen

Die SPI-Schnittstelle wird mit einer Baudrate von 9600 Hz betrieben. Unten stehen die dabei

ausgelesenen Signale.

Die Ausgabe im oberen Bild stellt den Write Befehl dar. Unten werden die Temperaturdaten

ausgelesen. Aufgrund der 14 Bit Ausgabe der Temperatur werden die letzten zwei Bits nicht

ausgelesen. Deshalb wird beim letzten Byte ein „?“ angezeigt.

Die Temperatur wird in Hex Zahlen übertragen. Die Umwandlung in eine binäre Temperatur

erfolgt nach dem Auslesen der Schnittstelle im Code (Siehe Kapitel 8.4.3.3).

Ausgabe im Terminal:

Die erste Zahl ist der Hex-Wert, die zweite der Dezimal-Wert.
Die Temperatur beträgt 25,44°C.

Abbildung 15: Messung mit Analog Discovery

Abbildung 16: SPI-Signal

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 33

8.5 Smart-Switch Version 2

8.5.1 Spezifikationen

Die zweite, finale Version des Smart-Switches wurde so gebaut, dass sie in eine

Wandinstallations-Einbaudose von EU-Normgröße passt. Weiters erfolgt die Stromversorgung

nicht mehr über ein Mikro USB Kabel, sondern über einen AC/DC Wandler direkt von der

Netzspannung. Der Netzspannungsbereich muss galvanisch komplett vom Rest der Schaltung

getrennt sein. Luft- und Kriechstrecken sind zu beachten.

8.5.2 Schaltung

Die Schaltung weicht aufgrund der anderen Spezifikationen von der Version 1 ab. Es werden

einige Bauteile durch alternativen ausgetauscht (z.B. Relais), weiters werden einige für die

Versorgung relevante Schaltungsteile hinzugefügt, wie der Linearregler inklusive Beschaltung.

8.5.2.1 Versorgung

Die Versorgung des Niederspannungsteils wird anschließend anhand des

Netzspannungsanteils und des Linearreglers im Detail erklärt. Anschließend folgt eine

Übersicht der Implementierung der einzelnen Bauteile.

Abbildung 17: Smart-Switch Version 2 in Buchse

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 34

8.5.2.1.1 Netzeil

Die Aufgabe des Mini-Netzteils ist es als Spannungsversorgung für die restliche Platine zu

fungieren. Dabei sollte es möglichst präzise eine 5V Ausgangsspannung liefern. Dafür ist

dieses Netzteil mit der sehr guten Toleranz von 2,5% und dem Temperaturkoeffizienten von

nur 0,03%/°C ideal geeignet. Es wurde immerhin auch für die Versorgung von ESPs oder

Raspberry-Pis entworfen. Der Kondensator dient zur weiteren Glättung der Spannung.

Im Netzteil werden die AC und DC-Teile galvanisch komplett getrennt. Das bedeutet, dass

trotz einer Energieübertragung, die unterschiedlichen Schaltungsteile nicht direkt miteinander

verbunden sind. Zudem bietet der AC/DC Wandler einen guten Schutz des

Niederspannungsteils gegen Störungen von außen. 12

12 Vgl. Galvanische Trennung - was ist das?

Abbildung 18: Netzteil V2

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 35

8.5.2.1.2 Linearregler

Der Linearregler wandelt die 5V nach einer weiteren Glättung durch die Kondensatoren, auf

die vom ESP benötigte, 3,3V Versorgungsspannung um. Das Vout_-Pad dient zur Kühlung

des Linearreglers und es muss mit Vout verbunden werden. Durch die Spannungswandlung

und den möglichst gleichbleibenden Strom wird einiges an Leistung in Wärme umgewandelt,

welche abgeführt werden muss.13

8.5.2.1.3 Sicherung

Die Sicherung dient zum Schutz des Relais im Fehlerfall.

Es wurde eine SMD-Sicherung ausgewählt, um Platz zu sparen. Die Sicherung hat einen

Nennwert von 5A, das bedeutet, dass sie bei diesem Strom sicher nicht auslöst. Der Strom ist

für die vorgesehene Anwendung viel zu hoch. Allerdings ist es so möglich, mit dem Smart-

Switch große Lasten zu steuern, wie die Beleuchtung einer Lagerhalle. Erst bei höheren

Strömen über längere Zeit oder sehr viel höheren Strömen nach kurzer Zeit wird sie

durchbrennen und damit die Schaltung schützen. Dieser Wert ist der Größte, der für eine

Sicherung mit diesem Footprint verfügbar ist. Die Leiterbahnen und die anderen Bauteile

währen in der Lage noch mehr Strom zu leiten bei einer Überlastung, durch einen zu großen

Stromverbrauch der Last, brennt also zuerst die Sicherung durch.

13 Vgl. Ewald, W. (2020).

Abbildung 20: Sicherung V2

Abbildung 19: Linearregler V2

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 36

8.5.2.1.4 Solid State Relais

Allgemeines

Ein Solid State Relais (SSR) ist ein Bauelement, das verwendet wird, um elektrische Lasten

ohne die Verwendung beweglicher mechanischer Teile zu schalten. SSRs bestehen aus

einem Sensor, einer Steuerschaltung und einem elektronischen Schalter (z.B. ein Thyristor).

Wenn ein Steuersignal an den Eingang des SSR angelegt wird, aktiviert die Steuerschaltung

das Schaltgerät, das dann den Stromfluss durch den Ausgangskreis ermöglicht. SSRs bieten

mehrere Vorteile gegenüber herkömmlichen Relais, wie z. B. schnellere

Schaltgeschwindigkeit, längere Lebensdauer, kleinere Größe, geringeres Rauschen und

höhere Zuverlässigkeit. Ebenfalls sind sie resistenter gegen große Leistungen, die bei uns

aufgrund der unbekannten Last auftreten könnten.14

Anwendung

Beim zweiten Relais verhält es sich ähnlich wie beim Smart-Switch V1, es wird allerdings das

Solid-State Relais SPF240D25 verwendet und der bipolare Transistor wurde durch den FET

Q1 ersetzt. Das Relais wird benötigt, um die Netzspannung von 230V AC mit dem

Mikrocontroller schalten zu können. Der Pulldown des Gate Anschlusses des FETs ist nötig,

um definierte Verhältnisse zu schaffen (Gate auf Ground ziehen), da beim Einschalten des

ESPs der State des Pins Switch (GPIO 21) hochohmig ist.

14 Vgl. Sicheres und effizientes Schalten von Strom oder Spannung mit Hilfe von Halbleiterrelais.

Abbildung 21: Solid State Relais V2

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 37

8.5.2.2 ESP-Anschluss

8.5.2.2.1 Temperatursensor (JTAG-Anschluss)

Der Alert Pin sollte mit der Versorgungsspannung verbunden werden, damit unabhängig vom

CS Zustand Benachrichtigungen gesendet werden können. Der Widerstand R7 wird hierbei

benötigt damit kein zu großem Strom über den Alert Pin fließt. Der Kondensator dient zur

Glättung der Versorgungsspannung.

Auf der Seite des Mikrocontrollers müssen SDI und SDO über einer 10 kOhm Widerstand

zusammengeschalten werden. Dies muss gemacht werden, damit die 3 Pin SPI korrekt

angesteuert werden kann.

Programmierung

Im Gegensatz zum Anschluss der 1. Version kann hier, aufgrund der korrekten Pin-

Beschaltung, das vordefinierte SPI-Protokoll der Arduino IDE eingesetzt werden. Es werden

zwar nicht die klassischen SPI-Pins verwendet, diese Anpassung kann im Code aber sehr

einfach vorgenommen werden. Der Alert Pin kann nun ebenfalls unabhängig vom CS-Pin

ausgelesen werden, wodurch sich der Code um einiges erleichtert. 15

15 Vgl. Arduino & Serial Peripheral Interface (SPI) | Arduino Documentation.

Abbildung 22: Temperatursensor V2

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 38

8.5.2.2.2 USB-Schnittstelle und Test/UART Pins

Der primäre Programmier-Anschluss ist die USB-Schnittstelle. Sie kann exklusiv verwendet

werden. Die Pins dienen primär zur Testung, könnten aber mit einer Vorbeschaltung auch zur

Programmierung verwendet werden. Dies ist aber nur eine Sicherheitsmaßnahme, dass im

Falle von unvorhersehbaren Problemen mit der USB-Schnittstelle eine andere Möglichkeit

gibt.16

USB-Schnittstelle

Der ID-Pin muss nicht angeschlossen werden, er dient zur Unterscheidung zwischen dem Host

(Typ A) und der Peripherie (Typ B), bei der Kommunikation über USB 2.0. Der Pin bleibt offen,

was den ESP zum Host macht, auf der Peripherieseite wir der Pin mit dem Ground

verbunden.17

Die Datenleitungen werden direkt auf die GPIOs 19 und 20 des ESP geführt. Dabei werden

sie jeweils über eine bidirektionale Diode mit dem Ground verbunden. Die Dioden dienen zum

Schutz der Datenleitungen vor Störungen durch beispielsweise ESD. Sie müssen bidirektional

sein, da die Datenleitung auch negative Spannungen haben können und die Dioden deshalb

in beide Richtungen leiten müssen.

Während der Programmierung des ESPs erfolgt die Spannungsversorgung über den Usb-

Stecker und die Diode CR1. Werden später die benötigten 5V vom Netzteil geliefert, verhindert

die Diode, dass ein externer Verbraucher versorgt wird. 18 19

16 Vgl. Eine Einführung in Mini-USB: Definition, Funktionen und Verwendung (2021).
17 Vgl. Glaser, O. (2012).
18 Vgl. Eine Einführung in Mini-USB: Definition, Funktionen und Verwendung (2021).
19 Vgl. USB: Pinbelegung von USB A, B, C und Micro-USB (2022).

Abbildung 23: USB Anschluss V2

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 39

Pins

Die USB-Schnittstelle ist funktional, deshalb können die Pins wie geplant zur Testung

eingesetzt werden. Die Ausgabe findet an 4 Pins statt. Die Datenleitungen werden direkt an

den ESP angeschlossen. Ebenfalls werden Vcc wie Ground angeschlossen. Um den

Anschluss als „Universal Asynchronous Receiver Transmitter“ oder UART müssen die

Datenleitungen der USB-Schnittstelle an Txd und Rxd angeschlossen werden.

8.5.2.2.3 Taster

Der mechanische Taster ist standardmäßig im Leerlauf, es fließt kein Strom. Wird er betätigt

so schließt sich der Kontakt und die Taster_V- Spannung liegt am GPIO 14 an. Die dem Taster

folgende Beschaltung ist eine Entprellung mit einer Dauer von 46,90 ms. Damit wird

vorausgesetzt, dass der Taster mindestens für 1/20 Sekunde betätigt werden muss, damit er

registriert wird.

𝑡 = √𝑅 ∗ 𝐶 = 46,90 𝑚𝑠

Der Tiefpass, der aus R6 und C3 gebildet wird, ist für diese Entprellung verantwortlich. Der R4

Pulldown wird benötigt, damit bei nicht betätigtem Taster der IO14 Pin nicht undefiniert ist (er

wird auf „LOW“ gezogen).

Abbildung 25: Tasteranschluss V2

Abbildung 24: Testpin V2

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 40

8.5.2.2.4 Spannungsversorgung

Die 3,3V kommen vom Ausgang des Spannungsreglers, sie werden auf der Seite des ESP

sicherheitshalber nochmals, mit Hilfe der Kondensatoren geglättet. Der Enable Pin benötigt

einen externen Pullup auf 3,3V damit der ESP gestartet wird. Bekommt der Enable Pin keine

Spannung wird der ESP ausgeschalten. Die Diode dient wie beim Smart-Switch Version 1 der

Testung, diesmal wurde allerdings ein etwas größerer Widerstand verwendet, um den

Stromverbrauch etwas zu senken.

Abbildung 26: Spannungsversorgung ESP V2

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 41

8.5.3 Layout

Beim Entwurf des Layouts mussten einige wichtige Schritte durchgeführt werden. Erstens um

die Funktionalität der Schaltung mit höchstmöglicher Sicherheit zu garantieren. Zweitens um

alle folgenden Anforderungen zu erfüllen.

Anforderungen

• Der Durchmesser einer genormten Schalterbuchse beträgt 68 mm, die Tiefe variiert

zwischen 40 und 60 mm.20

• Die Ambient Temperatur im Gehäuse, muss so nahe wie möglich an der

Außentemperatur liegen

• Das thermisch gesehen kritischste Bauteil darf nicht überhitzen

• Die verbrauchte Leistung hat so klein wie möglich zu sein

8.5.3.1 Größenoptimierung

Beim Design des finalen Smart-Switches wurde versucht, aufgrund der Produktionskosten die

Bauteile nur auf der Top Seite zu platzieren. Dies stellte sich aus Platzgründen allerdings als

unmöglich heraus. Deshalb wurden Bauteile auf „TOP“ und „BOTTOM“ Seite platziert, das

verbesserte ebenfalls das Handling.

Platzsparende Maßnahmen:

• Minimale Bauteil- und Leiterbahnabstände ausnutzen (Bauteilnorm 0805)

• Einige Bauteile auf der Rückseite der Platine anbringen

• Größte Diagonale der Platine minimieren

Es wurden das Netzteil, die LED, die Test Pins und der Taster mit der jeweiligen Beschaltung

auf der Rückseite platziert. So sind alle Testungsmöglichkeiten, auf einer Seite platziert.

Ebenfalls ist der Taster so gut zugänglich. Das Netzteil wurde aus reinen Platzgründen auf der

Bottom Seite angebracht.

20 Vgl. Feli (2021).

Abbildung 27: Bottom Bauteile Layout V2

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 42

Mit der größten Diagonale der Platine ist der größte Abstand von zwei Punkten auf der Platine

gemeint. Der Abstand muss kleiner als der Durchmesser einer Buchse sein, damit die

Leiterplatte hineinpasst. Die Diagonale konnte auf 64,91 mm verkürzt werden, damit ist die

Anforderung erfüllt.

Abbildung 28: Größte Diagonale

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 43

8.5.3.2 Thermische Berechnungen

Für die thermische Berechnung wird näherungsweise angenommen, dass die

Aluminiumplatte, an der Innenwand des Gehäuses die Temperatur im Gehäuse perfekt

gleichmäßig verteilt. Die Temperatur im Gehäuse wird als Ambient bezeichnet. In der Aluplatte

werden Lüftungsschlitze angebracht, um die Kühlung zu verbessern und um für eine erhöhte

BLE-Reichweite zu sorgen.

8.5.3.2.1 Linearspannungsregler

Das kritischste Bauteil beim Thema Abwärme ist der Linearspannungsregler zwischen 5V und

3,3V, da hier die Spannungsdifferenz in Abhängigkeit vom Strom direkt in Wärme

umgewandelt wird. Da das Bauteil aber sehr klein ist, könnte es auch leicht zu einer

Überhitzung führen, die maximale Ambient Temperatur muss deshalb ebenfalls anhand des

Linearreglers geprüft werden. Das Bauteil wird einerseits über seine Pins über die Leiterplatte

gekühlt, andererseits direkt durch die Ambient-Luft.

Die thermischen Widerstände des Bauteils können dem Datenblatt entnommen werden.

𝜃𝐽,𝐴 = 117 𝐾/𝑊 … Thermischer Widertand Junction zu Ambient (Luft)

𝜃𝐽,𝑃 = 29 𝐾/𝑊 … Thermischer Widertand Junction zu Pin groß

Der Thermische Widerstand zu den kleinen Pins kann ignoriert werden, da sich die Kühlfläche

auf der Platine direkt am großen Pin befindet, an die kleinen Pins aber nur vergleichsweise

dünne Leiterbahnen angeschlossen sind.

Der thermische Widerstand der Kühlfläche wurde von einem Fachmann von b2 abgeschätzt.

𝜃𝐽,𝐶𝑜 = 50 𝐾/𝑊 … Thermischer Widertand Junction zu Copper (Kühlfläche)

Thermische Schaltung

Junction zum Pin und Pin zur Leiterbahn liegen logischerweise in Serie. Die Kühlungen über

die Leiterbahn und die Luft sind parallel.

Abbildung 29: Thermische Schaltung V2

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 44

𝜃𝐿𝐺𝑒𝑠 =
(𝜃𝐽,𝑃+𝜃𝐽,𝐶𝑜)∗𝜃𝐽,𝐴

(𝜃𝐽,𝑃+𝜃𝐽,𝐶𝑜)+𝜃𝐽,𝐴
= 47,16 𝐾/𝑊 … Thermischer Gesamtwiderstand Linearregler

𝑇𝐽𝑀𝑎𝑥 = 150 °𝐶 … Maximale Junction Temperatur

𝑇𝐺𝑀𝑎𝑥 = 60 °𝐶 …Maximale Ambient Temperatur, also Temperatur im Innenraum des

Gehäuses

𝑃𝐿𝑀𝑎𝑥 =
𝑇𝐽𝑀𝑎𝑥−𝑇𝐺𝑀𝑎𝑥

𝜃𝐿𝐺𝑒𝑠
= 1,91 𝑊 … Maximale Leistung Linearregler

𝐼𝐿𝑀𝑎𝑥 =
𝑃𝐿𝑀𝑎𝑥

𝑈𝐷𝑖𝑓𝑓
= 1,12 𝐴 … Der Linearregler könnte also einen wesentlich größeren Strom

treiben als die von uns maximal benötigten 400 mA.

𝐼𝑅𝑒𝑎𝑙 = 400 𝑚𝐴 … Realer Stromverbrauch DC-Schaltungsteil

𝑃𝐿𝑅𝑒𝑎𝑙 = 𝑈𝐷𝑖𝑓𝑓 ∗ 𝐼𝑅𝑒𝑎𝑙 = 680 𝑚𝑊 … Reale in Wärme umgewandelte Leistung

𝛥𝑇𝐿,𝐴 = 𝑃𝐿𝑅𝑒𝑎𝑙 ∗ 𝜃𝐿𝐺𝑒𝑠 = 32,07 𝐾 … Realer Temperaturunterschied zwischen Linearregler und

Ambient

𝑇𝐿 = 𝑇𝐺𝑀𝑎𝑥 + 𝛥𝑇𝐿,𝐴 = 92,07 °𝐶 … Die maximale Temperatur des Linerarreglers

Da die maximale Temperatur des kritischsten Bauteils weit unter dem maximalen

Temperaturwert liegt, den der Linearregler erreichen darf, haben wir Wärmetechnisch kein

Problem.

8.5.3.2.2 Relais

𝐼𝐴𝐶𝑀𝑎𝑥 = 5 𝐴 … Maximaler AC-Strom

𝑈𝐴𝐶 = 230 𝑉 … AC-Spannung

𝑈𝑀𝑎𝑥𝐷𝑃 = 1,6 𝑉 … Maximum On Voltage Drop Peak

𝑈𝑀𝑎𝑥𝐷 =
𝑈𝑀𝑎𝑥𝐷𝑃

√2
= 1,13 𝑉 … Maximum On Voltage Drop

𝑃𝐴𝐶𝑀𝑎𝑥_𝑉𝑒𝑟𝑙𝑢𝑠𝑡 = 𝐼𝐴𝐶𝑀𝑎𝑥 ∗ 𝑈𝑀𝑎𝑥𝐷 = 5,66 𝑊 … Maximale Verlustleistung am elektronischen

Schaltkontakt

𝑃𝐴𝐶𝑀𝑎𝑥 = 𝐼𝐴𝐶𝑀𝑎𝑥 ∗ 𝑈𝐴𝐶 − 𝑃𝐴𝐶𝑀𝑎𝑥𝑉𝑒𝑟𝑙𝑢𝑠𝑡
= 1143,34 𝑊 … Maximaler Leistungsverbrauch der Last

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 45

8.5.3.2.3 Gesamtes Gehäuse

Das Gehäuse muss die Temperatur entstehen durch die gesamte Verlustleistung aller

Komponenten im Gehäuse abführen. Im Wesentlichen setzt sich die Leistung aus zwei

Komponenten zusammen.

𝑈𝐷𝐶𝑀𝑎𝑥 = 5 𝑉 … Maximale DC-Spannung

𝑃𝐷𝐶𝑅𝑒𝑎𝑙 = 𝐼𝑅𝑒𝑎𝑙 ∗ 𝑈𝐷𝐶𝑀𝑎𝑥 = 2 𝑊 … Maximale Leistung des DC-Anteils

𝑃𝐺𝑒𝑠 = 𝑃𝐴𝐶𝑀𝑎𝑥_𝑉𝑒𝑟𝑙𝑢𝑠𝑡 + 𝑃𝐷𝐶𝑅𝑒𝑎𝑙 = 7,66 𝑊 …Maximale Leistung des Relais

𝐶𝑉𝑆 = 200
𝐾∗𝑐𝑚3

𝑊
 … Constant Vertical Surface ist eine gängige Konstante wie sie von

Entwicklern zur annähernden Kühlwirkung von senkrechten Flächen verwendet wird.

Es ist sehr relevant, dass die Platine vertikal in der Buchse verbaut wird, es wirkt dann nämlich

die Höhe der Kühlfläche quadratisch, durch die Abwärme entstehende Konvektion der Luft.

ℎ = 4,7 𝑐𝑚 … Platinen Höhe

𝑏 = 5,59 𝑐𝑚 … Platinen Breite

𝜃𝑈,𝐴 =
𝐶𝑉𝑆

ℎ2∗𝑏
= 1,62 K/W … Thermischer Widerstand Umgebung zu Ambient

𝛥𝑇𝑈,𝐴 = 𝑃𝐺𝑒𝑠 ∗ 𝜃𝑈,𝐴 = 13,51 𝐾 … maximale Temperaturänderung Ambient zur Umgebung

𝑇𝑈𝑀𝑎𝑥 = 𝑇𝐺𝑀𝑎𝑥 − 𝛥𝑇𝑈,𝐴 = 46,49 °𝐶 … maximale Umgebungstemperatur, bei der die Platine

garantiert betrieben werden kann

Um eine normale thermische Änderung zwischen Umgebung und Ambient festzustellen

müssen gewöhnliche Verlustleistungen festgelegt werden.

𝐼𝐴𝐶𝑁𝑜𝑟𝑚 = 1 𝐴 … Gewöhnlicher AC-Strom (Wahlwert)

𝑃𝐷𝐶𝑁𝑜𝑟𝑚 = 𝑃𝐷𝐶𝑅𝑒𝑎𝑙/1,2 = 1,67 𝑊 … Gewöhnliche Leistung des DC-Anteils (ohne 20% Puffer)

𝑃𝐴𝐶𝑁𝑜𝑟𝑚_𝑉𝑒𝑟𝑙𝑢𝑠𝑡 = 𝐼𝐴𝐶𝑁𝑜𝑟𝑚 ∗ 𝑈𝑀𝑎𝑥𝐷 = 1,13 𝑊… Gewöhnliche Verlustleistung am elektronischen

Schaltkontakt des Relais

𝑃𝐺𝑒𝑠 = 𝑃𝐴𝐶𝑁𝑜𝑟𝑚_𝑉𝑒𝑟𝑙𝑢𝑠𝑡 + 𝑃𝐷𝐶𝑅𝑒𝑎𝑙 = 2,80 𝑊 …Gewöhnliche Gesamtleistung

𝛥𝑇𝑈,𝐴_𝑁𝑜𝑟𝑚 = 𝑃𝐺𝑒𝑠_𝑁𝑜𝑟𝑚 ∗ 𝜃𝑈,𝐴 = 4,54 𝐾 … Gewöhnliche Temperaturänderung Umgebung zu

Ambient

Die definierten Bauteilwerte wurden den Datenblättern entnommen, siehe CD.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 46

8.5.3.3 Leistungsoptimierung bzw. Management

Um den Leistungsverbrauch des Smart-Switches niedrig zu halten, muss auf einen möglichst

niedrigen Stromverbrauch aller Bauteile geachtet werden. Weiters sollte bei ICs darauf

geachtet werden, dass sie über einen Standby Modus verfügen. Ein Problem dabei ist die nicht

definierte Last, die mit unserem Smart-Switch geschalten wird. So ist es unklar wie viel Strom

über die Platine fließen wird. Als Resultat daraus mussten Bauteile mit Toleranzen für hohe

Ströme verwendet werden, die einen etwas höheren Verbrauch haben. Ebenfalls benötigen

die Leiterbahnen eine entsprechende Breite. Diese Maßnahmen sind speziell bei der

Anwendung des Smart-Switches im Haus relevant. Ersetzt man beispielsweise alle

Lichtschalter mit UiWs so summieren sich diese Maßnahmen natürlich und sparen auf längere

Zeit einiges an Geld.

8.5.3.3.1 Low-Power Mode

Der Low-Power Mode des ESP wird bei jeder Möglichkeit eingeschaltet. Der ESP muss ihn

nur verlassen, wenn er ein Eingangssignal von der BLE-Schnittstelle, dem Taster, der USB-

Schnittstelle oder dem Alert Pin bekommt. Da die USB-SS nur zur Programmierung benötigt

wird, kann dieser Fall während der Verwendung ausgeschlossen werden.

Abbildung 30: ESP Low Power Modis

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 47

BLE

Ein großer Teil der benötigten Leistung wird von der BLE-Kommunikation benötigt. Da nur an

bestimmten Zeitpunkten Daten versendet werden, kann hier schon viel Energie gespart

werden. Da BLE in den Sleeping Mous umschaltet.

8.5.3.3.2 Absolute Maximum Ratings

Der maximale Verbrauch ist von allen Leiterbahnen und Bauteilen abhängig. Dabei ist die

einzige relevante Information die Spezifikationen des schwächsten Glieds. Die

Spezifikationen werden zwischen Hoch- und Niederspannungsbereich unterschieden.

Der Hochspannungsteil gibt an wie viel Last Geschalten werden kann. Bei der Verwendung

des Smart-Switches ist auf diese Limitierung unbedingt zu achten. Bei Überlastung brennt

die Sicherung nämlich durch und muss ausgetauscht werden. Die Last darf maximal

1143,34W an Leistung verbrauchen. Das sollte für alle vorgesehenen Einsatzbereiche mehr

als genügen.

Beim Niederspannungsteil muss primär darauf geachtet werden wie viel Strom von den

Geräten kollektiv benötigt wird und ob die Versorgung diesen Strom liefern kann. Der ESP

selbst verbraucht bei voller Kommunikation über alle angeschlossenen Schnittstellen und die

eine Ausgabe von 100% auf alle GPIOs etwa 400 mA. Das hängt wiederum natürlich vom

Stromverbrauch der angeschlossenen Bauteile ab. Speziell für das Solid State Relais kann

der Stromverbrauch nur approximiert werden. Deshalb sind in die 400 mA etwa ein 20%

Puffer eingerechnet.

Abbildung 31: BLE-Stromverbrauch

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 48

Leiterbahnen

Es gibt nur eine Leiterbahn, die einen größeren Strom von 5A führt, und zwar die von den

Relais Schaltkontakten. Dauerhaft werden größere Ströme durch die Sicherung verhindert.

Auf der Platine wird exklusiv die Normstärke von 35um für die Leiterbahnenverwendet.

Leiterbahnbreiten

Die verhältnismäßig schmälste Leiterbahn befindet sich hierbei zwischen der Eingangsphase

und der Sicherung. Die anderen AC Leiterbahnen sind alle Doppelseitig verlegt und stellen

deshalb kein Problem dar. Aber selbst diese Leiterbahn sollte sich mit der Breite von 3 mm

und einem maximalen Strom von 5 A nicht um mehr als 12,5 K erwärmen. Wenn das

Verhältnis zwischen Strom und Temperatur im Bereich von 4,5 – 6,5 A näherungsweise als

linear angenommen wird.

Abbildung 32:
Sicherungsanschlu

ss

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 49

8.6 Software

8.6.1 Espressif IDF

Diese Option für die Software-Implementierung wurde zunächst gewählt, da das Programm

von der Herstellerfirma des Mikrocontrollers stammt. Die Kompatibilität mit dem Board ist

ebenfalls dokumentiert, somit können dort keine Probleme auftreten. Allerdings sind die

allgemeine Qualität und Dokumentation des Frameworks schlecht im Vergleich mit Arduino

IDE.

Installation

Die Installation für Espressif „IoT Development Framwork“ sollte keinesfalls durchgeführt

werden, ohne zuvor eine geeignete „Integrated Development Environment“ oder IDE

aufgesetzt zu haben. Die Verwendung ist zwar trotzdem theoretisch möglich, muss aber im

Terminal durchgeführt werden und ist dadurch unheimlich aufwendig. Weiterführend muss das

Framework komplett und korrekt wieder deinstalliert werden, bevor die Installation in der IDE

gestartet wird.21

Die Installation mit der IDE Visual Studio Code ist wiederum recht einfach. Es ist in VS-Code

möglich Extensionen für alle möglichen Zwecke herunterzuladen, auch Espressif IDF. Ein

ausführliches Tutorial zur Installation ist unter der folgenden Quelle zu finden.22

Anschließend muss die Erweiterung aktiviert werden. Mithilfe der der Kommando Eingabe und

der Toolleiste können dann alle Funktionen der Erweiterung verwendet werden. Die Navigation

ist recht komfortabel, allerdings müssen Fehleinstellungen beim Speichern oder Öffnen von

Dateien vermieden werden, diese können ansonsten zu schwer behebbaren Fehlern führen.

23

Für den ESP32-S3 und die dazugehörigen Dev-Kits gibt es bereits vordefinierte Librarys und

der Verbindungsaufbau klappt ebenfalls reibungslos.

21 Vgl. Get Started - ESP32 - — ESP-IDF Programming Guide latest documentation.
22 Vgl. ESP-IDF VS Code Extension (2023).
23 Vgl. IoT Development Framework I Espressif Systems.

Abbildung 33: Espressif IDF in VS Code

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 50

Fehlerbeschreibung

Zunächst können die Bibliotheken, die mit der Erweiterung zusammen installiert wurden, nicht

gefunden werden.

Die Bibliotheken erneut zu installieren bzw. falls sie installiert wurden, manuell den korrekten

Pfad einzugeben behebt dieses Problem.

CMake, eine Erweiterung zur Speicherung und Optimierung von Code, kann dann allerdings

die benötigten Dateien nicht erstellen.

Das Problem mit CMake ist ebenfalls nicht die Behebung dieses Fehlers, sondern die

Folgefehler, die daraus entstehen. Nach einigen Stunden der Fehlersuche ist das

schlussendlich auch der Grund für das Aufgeben der Espressif IDF in VS-Code als

Entwicklungsumgebung.

Abbildung 35: CMake Ninja Fehlermeldung

Abbildung 34: CMake Speichpfad Fehler

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 51

8.6.2 Arduino IDE

Programmiersprache

Die Entwicklungsumgebung Arduino IDE funktioniert mit einer eigenen Programmiersprache,

welche auf C++ basiert. Sie ist speziell auf das Programmieren von Arduino Boards ausgelegt,

andere Mikrocontroller lassen sich aber ebenfalls verwenden. Die Sprache ist

Benutzerfreundlicher als C++ und kommt mit vielen vordefinierten Bibliotheken. Dadurch wird

der Arbeitsaufwand um einiges reduziert, auch wenn die Bibliotheken nicht immer anwendbar

sind.24

Installation

Die Installation der Arduino IDE ist überaus einfach, es gibt nicht übermäßig viel zu

erklären.25 Die ESP32 Platinen sind allerdings noch nicht eingebunden. Diese können im

Library Manager von Github heruntergeladen werden.26 Im Board Manager können der

ESP32-S3 oder das DevKit zur Programmierung ausgewählt werden.

Verwendung

Die Entwicklungsumgebung bietet eine sehr simple Steuerung an. Der Haken dient zur

Verifizierung der Syntax des Codes. Der Pfeil dient zum Uploaden des Programms auf den

ESP. Das dritte Symbol dient dem Debuggen, dazu wird noch ein zusätzlicher Anschluss über

die UART benötigt. In der Liste rechts kann zu guter Letzt das verbundene Board ausgewählt

werden und den COM-Port, über den es verbunden ist. Hier ist das Board nicht angeschlossen.

24 Vgl. moicapnhap.
25 Vgl. Downloading and installing the Arduino IDE 2.0 | Arduino Documentation.
26 Vgl. Arduino_ESP32_OTA (2023).

Abbildung 36: Arduino IDE Funktionen

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 52

9 BRIDGE

9.1 Allgemeines

Die Bridge stellt das Bindeglied zwischen den einzelnen Smart-Switches und den Clients dar.

Sie übernimmt auch die Steuerung der Smart-Switches, damit deren Programme minimal

gehalten werden können und somit auch die Kommunikation aller Teilnehmer einfacher

gestaltet wird.

9.2 Hardware

Der physische Computerbestandteil besteht hierbei aus einem „Raspberry-Pi“. Dies ist ein

kompakter Computer, welcher in Form eines Moduls geliefert wird. Aufgrund des Fokus auf

Kompaktheit, fällt die Wahl des Modells hierbei auf das Model Zero 2W, welches mit einer

Größe von 65mm x 30mm eines der kompakteren Geräte der Marke ist. Diese Variante verfügt

über einen Quad-Core 64-bit ARM-Microchip, welcher mit einer Frequenz von einem Gigahertz

und einem Arbeitsspeicher von 512MB arbeitet. Dieser beinhaltet sowohl ein WLAN- als auch

ein Bluetooth-Modul, welche beide für die Kommunikation benötigt werden. 27

28

Abbildung 37: Raspberry-Pi Zero

Durch die derzeitigen schlechten Marktverhältnisse musste auf ein Modell zurückgegriffen

werden, welches bereits im Besitz eines Team-Mitgliedes war. Hierbei handelt es sich um das

Model 4B in der Variante mit 8GB Arbeitsspeicher. Dieser verfügt über diverse weitere

Schnittstellen, wie beispielsweise mehrere USB-A Ports, einem Ethernet-Port oder mehrere

micro-HDMI Ports. 29

27 Vgl. Ltd, R. P.
28 Vgl. Abbildung: Ltd, R. P.
29 Vgl. Ltd, R. P.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 53

30

Abbildung 38: Raspberry-Pi 4B

Zum Schutz des Gerätes vor Staub oder Stößen wird noch eine vorgefertigte Hülle verwendet,

welche mittels 4 Schrauben befestigt wird.

Abbildung 39: Raspberry-Pi 4B Case

Der Computer wird über die USB-C Schnittstelle mit 5V versorgt. Als Netzteil wird hierbei das

mitgelieferte verwendet.

9.3 Betriebssystem

9.3.1 Allgemeines

Das Raspberry-Pi verwendet als primäres Speichermedium eine Micro-SD Karte. Auf diese

muss zuvor das verwendete Betriebssystem installiert werden

9.3.2 Raspbian

Raspbian (auch Raspberry Pi OS genannt) ist das meistverwendete Betriebssystem für alle

Raspberry-Pi Modelle und wird auch vom offiziellen Anbieter entwickelt. Dieses System basiert

30 Ltd, R. P.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 54

auf dem Open-Source Betriebssystem GNU/Linux, einem quelloffenen Projekt, welches von

jeder Person und jedem Unternehmen frei verwendet werden darf.31

Für die Bridge wurde die „Headless“-Variante von Raspbian verwendet. Diese verfügt über

kein grafisches Benutzerinterface, da dieses für die Funktionen der Bridge nicht essenziell ist.

Mit dieser Methode werden auch Ressourcen gespart.32

9.3.3 Installation

Für die Installation des Betriebssystems wird das Programm Raspberry-Pi Imager verwendet,

welches von der Raspberry-Pi Foundation bereitgestellt wird. Vor der Beschreibung der SD-

Karte können auch noch mehrere Einstellungen vorgenommen werden. Hierbei wird der

Hostname der Bridge auf „uiw-Bridge“ gesetzt und ein Passwort für den Root-Benutzer

vergeben. Zudem wird noch SSH aktiviert, um eine direkte Entwicklung auf der Bridge zu

ermöglichen. 33

Abbildung 40: Raspberry-Pi Imager

9.4 Software

Für die Erfüllung der Funktionen muss eine individuelle Software für die Bridge erstellt werden.

Dieses Programm soll das Gerät beim Hochfahren einrichten, die Kommunikation regeln und

die einzelnen Modis abprüfen und anschließend die Smart-Switches steuern.

31 Vgl. Das GNU-System und Linux - GNU-Projekt - Free Software Foundation.
32 Vgl. FrontPage - Raspbian.
33 Vgl. Ltd Raspberry-Pi.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 55

9.4.1 Programmiersprache

Die Applikation muss in einer Sprache geschrieben werden, welche vom Betriebssystem

unterstützt wird. Für das Für die Kombination von Raspbian und dem Modell 4B stehen eine

große Auswahl von Programmiersprachen zur Verfügung. Zur Treffung einer Entscheidung

werden die beliebtesten Möglichkeiten verglichen (Siehe Anhang). Da es sich bei diesem

Projekt um den Bereich des Internets der Dinge handelt, fällt die Wahl auf Python, da diese

Sprache mehrere geeignete Bibliotheken für die Entwicklung bietet. Zusätzlich ist es relativ

einfach mit ihr umzugehen.

9.5 Funktion

Die Arbeitsweise der Software ist durch einzelne Klassen geregelt, welche jeweils durch einen

bestimmten Funktionsbereich eingegrenzt sind. Somit wird das Projekt übersichtlich gehalten

und es ist einfacher, Fehler aufzufinden und zu beheben.

9.5.1 Start der Software (Main-Methode)

Der Ausgangspunkt der Software stellt die „main“-Klasse dar. Diese wird beim Start

automatisch ausgeführt. Sie initialisiert die Haupt-Klassen des Projekts und startet die nötigen

Threads und Tasks.

9.5.2 Globale Elemente

Komponenten, welche global von allen anderen Elementen verwendet werden, finden ihren

Platz in der „Global-States“ Klasse. In ihr befinden sich die Manager der Verbindungen, die

derzeitigen Einstellungen und auch diverse Funktionen zur Aktualisierung anderer Objekte.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 56

Diagramm

Erklärungen

WriteLock: Dieser Wert wird auf Wahr gesetzt, wenn an den Einstellungen der Smart-Switches

und Modis eine Änderung durchgeführt wird. Somit wird verhindert, dass auf eine Datei von

mehreren Threads zugegriffen wird. Sobald diese Variable wieder vom derzeitigen

Leser/Schreiber auf Falsch gesetzt wird, kann die nächste Zugriffoperation auf diese Datei

erfolgen.

SendMessage: Diese Variable gibt an, ob eine neue Nachricht an den Client gesendet werden

soll. Dies wird von der Klasse „Network-Manager“ abgefragt.

modeExecutorRunning: Dieser Wert gibt Aussage darüber, ob die Modis derzeitig abgeprüft

werden.

switchList: In dieser Liste werden alle derzeitig aktiven Smart-Switch gespeichert.

modeMan: Dies ist die derzeitig laufende Instanz des „Mode-Managers“

init(): Diese Funktion ist zuständig, bei der Initialisierung des Objektes derzeitige Einstellungen

anzuwenden und das Objekt aufzusetzen. Dabei wird beispielsweise die derzeitige Startzeit

gesetzt.

UpdateSwitchState(): Dieses Methode wird verwendet, um den Switches einen neuen Wert

zuzuweisen.

UpdateTime(): Hierbei können Zeit-Variablen von Switches gelesen und manipuliert werden.

AddTestSwitch(): Diese Klasse wird nur zur Testung und zur ersten Initialisierung der Klasse

verwendet.

9.5.3 Vordefinierte Werte

Vor dem Start des Programmes müssen einige vordefinierte Werte festgelegt werden, welche

von Protokollen, Codierungen und Standards definiert wurden. Hierbei kommt die Klasse

„DefinedInformation“ zum Einsatz.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 57

Diagramm

Erklärungen

BC: Hierbei handelt es sich um die Werte der Struktur der Kommandos. Diese werden einem

Festwert zugewiesen, um eine Übereinstimmung zwischen den Verhaltensweisen bezüglich

Strukturen bei Client und Bridge anzuwenden

DateTimeTOUnix(dateTime): Diese Funktion übernimmt als Parameter ein DateTime-Objekt

und wandelt diese in das genormte Unix-Time Format um.

Dieses Format trägt als Startpunkt den 1. Januar 1970 und wird häufig in Computersystemen

verwendet, um Zeitpunkte zu speichern. Es hat den entscheidenden Vorteil, dass Zeitpunkte

somit als eine einzige Zahl dargestellt werden können.34

UnixToDateTime(unix): Dies ist das Gegenstück zur obigen Funktion. Hierbei werden

UnixTime-Werte wieder in DateTime-Objekte umgewandelt.

9.5.4 Verwaltung der Einstellungen

Die derzeitigen Einstellungen werden an einem zentralen Ort abgespeichert. Diese müssen

neben den Objekten und Variablen auch als feste Datei abgespeichert werden, um die Daten

nach einem Neustart wiederzuverwenden. Dies sollen simple Textdateien sein, welche leicht

eingelesen werden können.

34 Vgl. Unixtime.org.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 58

9.5.4.1 Vergleich der Lösungswege

Zur Abspeicherung von Daten bieten sich sehr viele Möglichkeiten. Hierbei sollen die Daten in

reinem Text abgespeichert werden, um diese für einen Menschen leicht lesbar zu machen.

Um eine gute Lösung für das System zu finden, werden die verschiedenen Lösungsarten

diskutiert (Siehe Anhang).

Schlussendlich wird das XML-Format verwendet, da es einfach zu lesen und bzw. zu schreiben

ist, und ebenso auch von vielen Applikationen verwendet wird. Für Python gibt es

beispielsweise eine populäre Bibliothek, welche einen großen Umfang an Funktionen bieten.

9.5.4.2 Realisierung

Das Speichern der Daten wird in einer eigener Klasse namens „SettingsManager“ geregelt.

Mithilfe dieser werden die gespeicherten Modis und Smart-Switch aufbewahrt

Diagramm

Erklärungen

LoadSettings(): Diese Methode ruft einfach die beiden Funktionen beider Typen zur Ladung

auf. Ihr Wert liegt also nur in der Vereinfachung des Ablaufs.

LoadSwitchSettings(directoryPath): Diese Funktion wird zum Laden der Schalterzustände

verwendet. Als Parameter übernimmt diese den allgemeinen Pfad der Einstellungen. Falls

dieser jedoch nicht existiert, wird eine neue Datei erstellt.

LoadModeSettings(directoryPath): Diese Methode führt die gleichen Arbeitsschritte durch, als

die obige, jedoch auf die Modis bezogen.

SaveSettings(): Diese Funktion übernimmt die gleiche Rolle wie die „LoadSettings()“ Methode,

jedoch wird hierbei gespeichert.

SaveSwitchSettings(directoryPath): Diese Funktion ist zum Speichern der Smart-Switch

zuständig. Als Parameter übernimmt diese den allgemeinen Pfad der Einstellungen. Falls

dieser jedoch nicht existiert, wird eine neue Datei erstellt., ansonsten überschrieben.

SaveModeSettings (directoryPath): Diese Methode führt die gleichen Arbeitsschritte durch, als

die obige, jedoch auf die Modis bezogen.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 59

9.5.5 Schalterbezogene Elemente

Alle Elemente, welche sich auf den Smart-Switch beziehen werden als („Switch“-)Objekt

dargestellt. Das gilt auch für den Schalter an sich.

9.5.6 Schalter

Das „Switch“-Objekt verfügt über alle benötigten Variablen eines Schalters, jedoch besitzt

diese Klasse abgesehen des Konstruktors keine Funktionen.

Diagramm

Erklärungen

Name: Dies ist der Anzeigename des Schalters.

Address: Dies ist die Adresse des Schalters mit einer Größe von 8 Bit.

stateOn: Der physikalische Zustand des Schalters

__init(address)__(): Der Konstruktor legt die Adresse fest und generiert einen zufälligen

Namen. Dies geschieht über eine eingebundene Klasse namens „Haikunator“. 35Dabei wird

ein Name ausgewählt, welcher aus einem Adjektiv und einem Nomen besteht. Mit einem

Bindestrich werden die beiden Wörter zusammengeführt. Durch einen solchen lesbaren

Namen, kann der Benutzer den Schalter besser erkennen, als beispielsweise durch die

Adresse.

9.5.7 Modus

Für die einzelnen Modis gibt es wie bei den Schaltern eine eigene Klasse, da mit dem

Verfahren der objektorientierten Programmierung (Siehe Anhang) effizienter Gearbeitet

werden kann.

Diagramm

35 Vgl. Atrox (2023).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 60

Erklärungen

characteristicsToMet: Eine Liste bestehend aus allen Charakteristiken des Modis.

Invert: Gibt an, ob „executeMet“ invertiert werden soll

executeMet: Diese Variable gibt an, ob die Bedingungen des Modis erfüllt wurde.

onSingle: Gibt an, ob ein Modus schon bei Erfüllung einer Charakteristik ausführbar ist.

Name: Der nutzerdefinierte Name

CheckSpecific(CharacteristicType,value): Überprüft, ob eine Charakteristik einen bestimmten

Wert erfüllt hat.

ReviewExecuteMet(): Prüft alle einzelnen Charakteristiken ab und gibt an, ob der Modus zur

Ausführung bereit ist.

9.5.8 Aufbewahrung der Schalter

Um die verschiedenen Smart-Switches zu speichern, werden eigene Klassen für diese Listen

erstellt

Diagramm

Erklärungen

Raw: Ein Objekt einer Liste. Hier werden die einzelnen Smart-Switches gespeichert

ToXML(): Diese Funktion wandelt die Liste mittels der XML Bibliothek von Etree in einen string

um und gibt diesen zurück. Ein Beispiel für einen solchen XML-String könnte so aussehen:36

36 Vgl. xml.etree.ElementTree — The ElementTree XML API.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 61

FromXML(raw): Diese Methode fungiert als Gegenstück der Vorigen. Sie entnimmt als

Eingangsparameter einen XML-String und überschreibt mit dessen Inhalt ihre eigenen Werte

9.5.9 Verwaltung der Modis

Für die Durchführung der Modis ist die Datei „ModeExecutor“ zuständig. Dabei werden die

einzelnen Modis mittels eines Threads überprüft. Dieser kann mittels der Funktion „Start()“

begonnen werden.

Der Thread wartet anfangs, bis der Schreibschutz gelöscht wurde, damit keine Modis überprüft

werden, während diese sich gerade aktualisieren. Anschließend wird jeder gespeicherte

Smart-Switch durchgegangen und der gespeicherte Modus überprüft. Sollte dieser die

Voraussetzungen für eine Ausführung erfüllen, wird dies gemacht. Dabei wird auch die

Invertierung berücksichtigt. Die Benachrichtigung des jeweiligen Smart-Switches erfolgt dabei

wieder über den Bluetooth Abteil. (Siehe „BluetoothManager“)

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 62

10 CLIENT

10.1 Grundidee

Um die Einstellungen der Bridge zu manipulieren, braucht es eine Applikation, welche auf

einem weiteren Gerät installiert wurde. Diese Software bildet die Schnittstelle zum Benutzer

selbst. Die verwendeten Komponenten sind im Anhang zu finden.

10.2 Konsolen-Applikation

Vor der Entwicklung einer grafischen Oberfläche, wird ein Konsolenprogramm erstellt, welches

alle nötigen Funktionen zur Manipulation und Austausch von Daten enthält. Dies ermöglicht

eine einfache Testung. Anbei eine Übersicht der Projektstruktur

Die Funktion des Datenaustausches wird im Kapitel 13 Kommunikation behandelt.

10.2.1 Bridge aus Client-Sicht

Eine Bridge wird von dem Client als ein Objekt gesehen, welche als die Klasse „LocalBridge“

definiert wird. Diese beinhaltet alle Daten, welche die Applikation braucht, um mit dieser zu

kommunizieren und Einstellungen zu verwalten.

Diagramm

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 63

switchList: Dieses Objekt beinhaltet alle derzeit verfügbaren Schalter.

modeList: Dieses Element enthält alle auf der Bridge gespeicherten Modis

possibleCharacteristics: Dies ist wiederum eine Liste, welche alle möglichen Sorten von

Characteristiken enthält, welche von den einzelnen Instanzen als Typ angenommen werden

können

alsoUpdateSwitchesOnMode: Falls ein Modus gelöscht wird, welcher von einem Schalter

derzeitig verwendet wird, kann dieser bei Aktivierung dieser Variable durch den Standart-

Modus ersetzt werden.

CalcPossibleCharacteristics(): Diese Methode berechnet die Anzahl der möglichen

Charakteristiken.

Weitere: Die weiteren Variablen und Methoden sind zuständig, um die obigen privaten

Variablen für den Zugriff von außen durchzugeben. Dabei können auch die Zugriffsrechte

beschränkt werden.

10.2.2 Mode als Objekt

Wie auch bei der Bridge wird hier ein Mode als eigenes Objekt angesehen. Die Variablen und

Methoden bleiben bis auf die XAML-Formatierung identisch zur Python-Implementierung der

Bridge. Genaueres kann im entsprechenden Kapitel gefunden werden.

Diagramm

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 64

Erklärungen

ToXAML(): Formatiert den Modus als XAML-Text und gibt diesen zurück.

10.2.3 Schalter als Objekt

Wie auch beim Modus werden hier nur die Ergänzungen der Klasse genauer erklärt. Mehr zur

Implementierung kann im Kapitel 11 Bridge gefunden werden

Diagramm

Erklärungen

VirtMode: Da der Name des Modus als Text gespeichert wird, muss noch eine Verbindung

zum richtigen Objekt des Modus erzeugt werden. Dies wird durch dieses dargestellt. Bei einer

Änderung wird auch der Text-Name umgestellt.

SetStateCommand: Kommandos werden genauer im Kapitel 12.5 Client V2 beschrieben.

Hierbei handelt es sich um denjenigen, welcher eine Änderung des Schalters hervorruft.

Weiteres: Wie auch zuvor dienen die weiteren Variablen als Zugriffs-Operatoren

10.2.4 Vordefinierte Einstellungen

Neben den Definitionen der Kommandos und den Unix-Umrechnungen befinden sich auch

weitere Informationen zur Kommunikation zwischen Client und Bridge in der Defined-

Information Klasse.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 65

Diagramm

Erklärungen

LocalDebugMode: Hiermit kann der Debug-Modus eingeschalten werden. Bei der Aktivierung

verbindet sich der Client mit einer Loop-Back-Adresse, um sich mit der simulierten Bridge zu

verbinden

TCPPort: Diese Konstante enthält die Port-Nummer, unter welcher der TCP-Server der Bridge

läuft.

BridgeHostName: Dieser Bestandteil der Klasse enthält den Hostnamen der Bridge

10.2.5 Management der Kommunikation

Dies wird von der Klasse „NetworkManager“ geregelt, welche im genauen im Kapitel 13

Kommunikation behandelt wird. Im Folgenden sind Ergänzungen zu finden. Zum

Datenaustausch bedarf es einem TCP-Client, welcher durch das Nuget-Paket „SimpleTCP“

bereitgestellt wird.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 66

Diagramm

Erklärungen

bridgeAdress: Enthält die derzeitige IP-v4 Adresse der Bridge

toSend: Gibt an, ob eine neue Nachricht gesendet werden soll

received: Gibt an, ob eine neue Nachricht empfangen wurde

simpleClient: Objekt des TCP-Clients

lastMessageReceived: Enthält die letzte empfangene Nachricht

dataToRead: Enthält die neuen Bytes, welche gelesen werden sollen

dataToSend: Enthält die neuen Bytes, welche als nächstes versendet werden sollen

bridgeFound: Ein Boolean-Wert, welcher angibt, ob die Bridge gefunden wurde

connectionError: Gibt an, ob beim Verbindungsaufbau ein Fehler aufgetreten ist

canToken: Enthält einen Token, welcher bei Aktivierung alle Threads beendet.

Weiteres: Alle weiteren Funktionen und Variablen, welche nicht im Kapitel 13 Kommunikation

behandelt werden, dienen als Zugriffs-Operatoren für die privaten Variablen.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 67

10.2.6 Speichern der Modis & Smart-Switches

Auch auf der Client-Seite müssen diese einzelnen Objekte in einer Liste abgelegt werden

Hierzu werden auch eigene Typen als Klasse definiert, diese erben von der Klasse

„ObservableCollection“. Dieser Datentyp benachrichtigt zusätzlich auch das UI bei einer

Aktualisierung.

Unter einer Vererbung versteht man, dass eine Klasse (Kindklasse oder Unterklasse) die

Eigenschaften und Verhaltensweisen einer anderen Klasse (Basisklasse oder Überklasse)

übernehmen kann. Dadurch kann eine neue Klasse von einer bestehenden Klasse abgeleitet

werden, ohne dass der Code der Basisklasse erneut geschrieben werden muss.

In C# wird eine Vererbung durch ein „:“ neben der Definition der Klasse dargestellt.

Diagramme

Der grundsätzliche Aufbau der Listen ist abgesehen vom Typ. Sie beinhalten beide auch

Funktionen zur Serialisierung als XML

Erklärungen

GetStringList(): Diese Funktion gibt alle Namen der Modis als weitere Liste zurück. Dies ist für

die Anzeige im UI notwendig.

10.2.7 Umgang der empfangenen Nachricht

Nach dem Empfang einer Nachricht muss entschieden werden, welche Aktion der Client als

nächstes durchführen soll. Dies wird von der Funktion „ReceiveController“ in der statischen

Klasse „MessageController“ übernommen.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 68

Eine statische Funktion in C# ist eine Funktion, die zu einer Klasse und nicht zu einem

bestimmten Objekt gehört. Diese kann direkt über den Klassennamen aufgerufen werden,

ohne dass eine Instanz der Klasse erstellt werden muss. Um ein Element als statisch zu

markieren, wird das Wort „static“ nach dem Zugriffs-Operator eingefügt.37

Diagramm

Erklärung

ReceiveController(message): In dieser Funktion befindet sich ein switch-case, welches je nach

Art der Nachricht eine andere Aktion durchführt.

Ein switch-case-Statement in C# ist ein Kontrollstruktur, die verwendet wird, um aus einer

Reihe von möglichen Werten einen bestimmten Abschnitt des Codes auszuführen. Es enthält

dabei eine Ausdrucksangabe, die einen bestimmten Wert berechnet, und eine Reihe von case-

Anweisungen, die den Wert mit den unterschiedlichen Fällen vergleichen. Wenn ein Fall

gefunden wird, der dem Wert entspricht, werden die Anweisungen innerhalb dieses Falls

ausgeführt. Wenn kein Fall gefunden wird, wird die default-Anweisung ausgeführt, falls

vorhanden. 38Anbei ein Beispiel, welches ausgeführt wird, sobald es sich bei der

eimpfangenen Nachricht um eine Liste von Modis handelt.

Zuerst wird die neue Liste übernommen und abgespeichert, dabei wird eine Meldung im

Konsolen-Fenster ausgegeben. Anschließend werden die neuen Modis in den Schaltern

aktualisiert.

37 Vgl. Was ist eine statische Funktion in C? | Referenz (2021).
38 Vgl. BillWagner (2023b).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 69

10.2.8 Durchführung von Testungen

Um Verhaltensweisen mittels des Konsolenprogramms zu testen, werden die entsprechenden

Arbeitsschritte in die „main“-Methode der Klasse „Programm“ eingefügt. Bei der Ausführung

des Programmes werden die Nachrichten versendet und auf eine Antwort der Bridge gewartet.

Beispiel

Im folgenden Programm werden zwei Modis erstellt, welche anschließend zur Bridge gesendet

werden.

 Das Programm wird aus Testgründen im Debug-Mode ausgeführt. An der Ausgabe der

Konsolen lässt sich erkennen, dass der Test erfolgreich war und die Daten übertragen wurden.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 70

Abbildung 41: CLI-Client

Hier im Client-Log kann nachvollzogen werden, dass sich die Bridge zuerst mit dem Client

verbindet, anschließend die XML-Daten ausgegeben und schließend auch versendet werden.

Im Konsolen-Fenster der Bridge kann dies auch verifiziert werden. Der Verbindungsaufbau ist

zu erkennen, sowohl als auch der Schreibprozess der Modis.

10.3 Client-Applikation (Version 1)

10.3.1 MAUI-Framework

Für die Erstellung von einer grafischen Benutzeroberfläche benötigt es ein UI-Framework.

Hierbei fiel die Entscheidung auf .NET MAUI (Multi-platform App UI). Dies ist ein Open-Source-

Framework für die Erstellung von plattformübergreifenden Anwendungen, die auf iOS,

Android, macOS, Windows und anderen Plattformen laufen können. Es ist eine Erweiterung

von Xamarin und wurde von auch Microsoft entwickelt. Im Kern von .NET MAUI stehen XAML-

basierte Views, die es Entwicklern ermöglichen, plattformübergreifende Benutzeroberflächen

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 71

zu erstellen. Es enthält auch eine umfangreiche Sammlung von Controls und Layouts, die

genau für eine solche Entwicklung optimiert sind.3940

41

Abbildung 42: .NET MAUI Layers

Dieses System ermöglicht es, eine einheitliche API für die Entwicklung plattformübergreifender

Anwendungen zu verwenden, indem es die Android-, iOS-, macOS- und Windows-APIs in

einer API vereint. Auf diese Weise kann der Code einmal geschrieben und auf verschiedenen

Plattformen ausgeführt werden, während gleichzeitig ein umfassender Zugriff auf alle

Funktionen der jeweiligen Plattformen gewährleistet wird.

Im Rahmen von .NET 6 werden verschiedene plattformspezifische Frameworks zur Erstellung

von Apps bereitgestellt, darunter .NET für Android, .NET für iOS, .NET für macOS und

Windows UI 3 (WinUI 3). Diese Frameworks greifen auf die gleiche .NET Base Class Library

(BCL) zu, die die Details der zugrunde liegenden Plattform abstrahiert.42

Obwohl die BCL es ermöglicht, eine gemeinsame Geschäftslogik für plattformübergreifende

Anwendungen zu teilen, bieten die verschiedenen Plattformen unterschiedliche Modelle für die

Definition von Benutzeroberflächen und für die Interaktion zwischen den Elementen der

Benutzeroberfläche. Diese kann für jede Plattform separat mit dem entsprechenden

plattformspezifischen Framework erstellt werden. Dies erfordert jedoch die Verwaltung einer

Codebasis für jede Gerätefamilie separat.43

39 Vgl. Was ist .Net? – Erläuterung zu Dotnet – AWS.
40 Vgl. davidbritch (2023a).
41 Abbildung: davidbritch (2023b).
42 Vgl. .NET MAUI: Paradiesische App-Entwicklung.
43 Vgl. davidbritch (2023a).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 72

44

Abbildung 43: .NET MAUI Layers (Specific)

10.3.2 Designmuster

Um die Applikation möglichst effizient und übersichtlich zu gestalten, bedarf es an einem

Design-Muster, nach welchem die verschiedenen Komponenten ausgelegt sind. Es gibt viele

verschiedene Design-Muster, die bei der Entwicklung von Software eingesetzt werden können,

weshalb eine Entscheidung getroffen werden muss.45

10.3.2.1 Vergleich

Model-View-ViewModel (MVVM) ist das beliebteste Muster, welches am öftesten eingesetzt

wird. Es teilt die Anwendung in drei Komponenten: Das Model, die View und das ViewModel.

Das Model enthält die eigentlichen Daten, die von der Anwendung verwendet werden,

während die View die Benutzeroberfläche darstellt, die der Benutzer sieht und mit der er

interagiert. 46Das ViewModel fungiert als Vermittler zwischen dem Model und der View, indem

es die Daten aus dem Model abruft und in eine Form transformiert, die von der View angezeigt

werden kann. Es ermöglicht auch, dass Änderungen an der Benutzeroberfläche vom Benutzer

erfasst werden und diese Änderungen an das Model weitergeleitet werden.47

44 Abbildung: davidbritch (2023b).
45 Vgl. Design Patterns – schneller und sicherer programmieren (2020).
46 Vgl. Augsten, S. (2022).
47 Vgl. michaelstonis (2022).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 73

Durch die Verwendung von MVVM wird die Trennung von Geschäftslogik und

Benutzeroberfläche erleichtert. Der Code, der für die View und das ViewModel geschrieben

wird, ist in der Regel unabhängig von der tatsächlichen Implementierung der

Benutzeroberfläche und des Models. Dies erleichtert die Tests und Wartung des Codes,

insbesondere in komplexen Anwendungen.

Model-View-Controller (MVC) ist ein Designmuster, das ähnlich wie MVVM die Anwendung in

drei Komponenten aufteilt, jedoch ohne das ViewModel. Das Model enthält die Daten, die View

enthält die Benutzeroberfläche und der Controller dient als Vermittler zwischen dem Model

und der View.48

Beim Singleton-Muster wird sichergestellt, dass es nur eine einzige Instanz einer Klasse gibt

und dass diese global verfügbar ist. Dies ist nützlich, wenn nur eine einzige Instanz einer

bestimmten Klasse benötigt wird, z.B. für den Zugriff auf eine gemeinsame Ressource.49

Auch ist es möglich, mittels des Factory-Systems separate Klassen für die Erstellung von

Objekten zu verwenden. Dadurch wird der Code, der für die Erstellung der Objekte zuständig

ist, von dem Code getrennt, der die Objekte tatsächlich verwendet.50

48 Vgl. StephenWalther (2022); The Model View Controller Pattern – MVC Architecture and

Frameworks Explained (2021).
49 Vgl. Singleton Design Pattern: Das Singleton-Entwurfsmuster kurz erklärt - IONOS.
50 Vgl. Factory Pattern: Alle Informationen zum Factory Method Pattern (2020).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 74

10.3.2.2 Entscheidung

Schlussendlich fällt die Entscheidung auf das Model-View-ViewModel Design-Muster, da es

von der Industrie am meisten verwendet wird und auch mehrere Bibliotheken bereitstehen, um

den Umgang mit MVVM zu vereinfachen. In diesem Projekt wird das Community-Toolkit

verwendet. Dies ist eine Open-Source-Bibliothek, die von der .NET-Community entwickelt wird

und neben der MVVM-Automatisierung eine Sammlung von Steuerelementen, Erweiterungen

und Dienstprogrammen für die Entwicklung von Cross-Platform-Apps mit .NET MAUI bietet.

Das Toolkit wurde entwickelt, um Entwicklern dabei zu helfen, schneller und effizienter

plattformübergreifende Anwendungen zu erstellen, indem es häufig verwendete Funktionen

und Benutzeroberflächenelemente bereitstellt. Das Toolkit enthält dazu auch eine Vielzahl von

Komponenten, darunter Steuerelemente für die Benutzeroberfläche (z.B. Diagramme,

Schaltflächen, Listen und Schieberegler), Erweiterungen für Datenbindung, Navigation,

Animationen und vieles mehr.51

10.3.3 Aufbau

Die einzelnen Dateien des Projektes werden in einer hierarchischen Ordnerstruktur angelegt.

Dabei sind diese auch nach Funktionen getrennt.

51 Vgl. bijington (2022).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 75

Neben den Ordnern des MVVM-Musters finden wird auch den „Platforms“-Ordner, welcher die

Konfigurationen für die einzelnen Plattformen beinhaltet.

Die komplette Applikation ist in 3 Abschnitte gegliedert: BridgeStatus, ModesDashboard und

SwitchDashboard. Diese Teile erhalten alle ihe eigene View, sowohl als auch ein ViewModel.

Letztere greifen auf die Models der Applikation zu.

10.3.4 Ablauf nach Ausführung

Während dem Startvorgang der Applikation wird versucht, eine Verbindung mit der Bridge

herzustellen. Dies geschieht in der Klasse „App“. Sollte der Verbindungsversuch erfolgreich

sein, werden alle Tabs im UI freigeschaltet.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 76

10.3.5 Implementierung Model-View-ViewModel

10.3.5.1 BaseViewModel

Um das MVVM-Muster umzusetzen, wird eine abstrakte Klasse namens „BaseViewModel“

erstellt, von welcher alle ViewModels erben.

Diese abstrakte Klasse beinhaltet mehrere Variablen, welche mit der „OnPropertyChanged“

Methode versehen sind. Diese dient dazu, Änderungen der Datenfelder der View

weiterzugeben.

Mit Hilfe des Community-Toolkits kann dieser Code-Abschnitt durch zwei Zeilen vereinfacht

werden:

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 77

10.3.5.2 Anzeige der Views

Die Elemente, welche im Hauptfenster dargestellt werden, können in der „AppShell“ definiert

werden. Diese XAML-Datei wird so modifiziert, dass zum derzeitigem ViewModel immer das

richtige View angezeigt wird.

10.3.6 Informationen zur Bridge

Die BridgeStatusView hat zur Aufgabe, eine Möglichkeit zur Verbindung mit der Bridge

anzubieten, als auch Informationen diesbezüglich anzuzeigen. Falls ein Verbindungsversuch

beim Start der Anwendung missglückt ist, so kann ein erneuter Verbindungsversuch mit dem

Knopf „Try Again“ gestartet werden. Erfolgt dieser, wird die IP-Adresse der Bridge angezeigt.

Das User Interface (View) ist unvollständig, da dieses vor dem UI-Framework Wechsel nicht

vollendet wurde.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 78

Abbildung 44: Bridge-Dashboard (V1)

Die „Connect“-Funktion wird durch einen asynchronen Task geregelt. In C# bezieht sich ein

asynchroner Task auf einen Arbeitsschritt, der auf einem separaten Thread ausgeführt wird

und parallel zur Hauptanwendung ausgeführt wird. Im Gegensatz zu synchronen Tasks, bei

denen die Anwendung blockiert wird, bis der Task abgeschlossen ist, ermöglichen asynchrone

Tasks der Anwendung, während des Ausführungsprozesses weiterhin reaktiv zu bleiben. Sie

werden üblicherweise mit dem async/await-Schlüsselwort in C# implementiert. Das async-

Schlüsselwort wird verwendet, um eine Methode als asynchron zu markieren, während das

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 79

await-Schlüsselwort verwendet wird, um die Steuerung an die Hauptanwendung

zurückzugeben, während der asynchrone Task im Hintergrund ausgeführt wird.52

Die Verwendung von asynchronen Tasks kann dazu beitragen, die Leistung und

Reaktionsfähigkeit der Anwendung zu verbessern, insbesondere bei Anwendungen mit hohem

Datenvolumen oder wenn auf Ressourcen zugegriffen wird, die längere Zeit benötigen, um

eine Antwort zu liefern, wie z.B. bei Netzwerkanforderungen oder Datenbankabfragen.53

Auch hierbei wird die Implementation durch das Community-Toolkit erleichtert, da eine

asynchrone Funktion durch den Text „[RelayCommand]“ zu einem Command wird.54

Bei der Ausführung des Commands wird die „isBusy“ Variable auf Wahr gesetzt. Dies hat den

Vorteil, dass nicht zu viele asynchrone Operationen auf einmal abgearbeitet werden, da alle

diese auf die Freigabe dieser Variable warten.

Auch wird alles innerhalb des Commands in einem „Try-Catch“-Block durchgeführt. Dies ist

eine Struktur, die verwendet wird, um Fehler abzufangen, die während der Ausführung des

Codes auftreten können. Der Try-Block enthält den Code, der möglicherweise einen Fehler

auslösen kann, während der Catch-Block den Code enthält, der ausgeführt wird, wenn ein

Fehler auftritt.55

52 Vgl. Asynchronous programming - C# | Microsoft Learn.
53 Vgl. dotnet-bot.
54 Vgl. bijington (2022).
55 Vgl. BillWagner (2023a).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 80

Der „finally“-Block wird nach dem Try-Catch ausgeführt und benachrichtigt über das

PropertyChanged-Event das UI.

10.3.7 Einstellungen der Schalter

Um verschiedene Einstellungen an den Schaltern vorzunehmen, bedarf es einer eigenen

Oberfläche. Auf dieser sollen alle Schalter aufgelistet werden. Dies wird im Abteil

„SwitchDashboard“ geregelt. Für jedes Schalterelement in der Liste stehen dabei mehrere

Elemente zur Modifikation der Einstellungen.

Abbildung 45: Devices-Overview

Für jeden Schalter ist die ID, der Name, der Modus und der derzeitige Zustand zu sehen,

welche nach Belieben verändert werden können. Wenn die Einstellungen übernommen

werden sollen, wird der Button „Save Settings“ betätigt, welcher wie schon zuvor einen

asynchronen Task ausführt.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 81

10.3.8 Modifikation der Modis

Um die Funktionen der Schalter zu automatisieren, bedarf es dem Abteil „ModeDashboard“.

In dieser Ansicht können neue Modis hinzugefügt und gelöscht werden, sowie auch deren

Einstellungen manipuliert werden. Dabei werden wie auch beim SwitchDashboard die

Charakteristiken der Reihe nach aufgelistet.

Abbildung 46: Mode-Management (V1)

Am unteren Bildschirmrand können wieder die Einstellungen gespeichert werden. Zudem

befinden sich daneben zwei weitere Buttons, welche dafür da sind, Charakteristiken zu

löschen oder hinzuzufügen.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 82

10.3.9 Probleme

Während der Erstellung der MAUI-Applikation treten immer mehr Fehler des MAUI-Systems

zum Vorschein. Dies liegt vor allem daran, dass dieses System sich derzeit in einer „Preview“-

Phase befindet und noch nicht vollständig für die Produktion veröffentlicht wurde.56

Der große Vorteil, welcher MAUI bieten soll, ist die einfache plattformübergreifende

Entwicklung. Dies konnte jedoch nicht zur Vollständigkeit ausgenutzt werden, da der Androide-

Debugger unter den verwendeten Betriebssystemen derzeitig nicht verwendbar ist.

Auch sind viele wichtige Funktionen noch nicht implementiert, wie zum Beispiel mehrere UI-

Controls oder Events. Dazu befinden sich sehr viele Fehler im MAUI-Framework, welche das

Arbeiten so erschwert, dass das die Applikation nur noch schwer umsetzbar ist.

Aufgrund dieser Komplikationen wird das UI-Framework auf WPF gewechselt.

10.4 Client-Applikation (Version 2)

10.4.1 WPF-Framework

Windows Presentation Foundation (WPF) ist ein von Microsoft entwickeltes Framework zur

Erstellung von grafischen Benutzeroberflächen (GUI) in Windows-Anwendungen. Es wurde

erstmals mit dem .NET-Framework 3.0 veröffentlicht und ist seitdem ein wichtiger Bestandteil

des .NET-Frameworks.

WPF ermöglicht die Erstellung von Desktop-Anwendungen mit modernen und interaktiven

Benutzeroberflächen, die auf verschiedenen Windows-Plattformen laufen. Es bietet eine

XAML (Extensible Application Markup Language) genannte deklarative Sprache, mit der

Benutzeroberflächen einfach und schnell entworfen werden können.57 Darüber hinaus

unterstützt WPF auch eine Reihe von Grafik- und Multimedia-Funktionen, einschließlich 2D-

und 3D-Grafiken, Animationen und Video.58

Ein weiterer Vorteil von WPF ist die Trennung von Design und Code. Mit dem Framework

können Entwickler die Design-Elemente und den Code für die Anwendungslogik getrennt

voneinander erstellen, wodurch die Entwicklung und Wartung von Anwendungen einfacher

und effizienter wird.59

Die Wahl fiel nach dem Framework-Wechsel auf WPF, da dieses schon lange in der Industrie

verwendet wird und bereit für ein Production-Environment ist.

56 Vgl. Ramel, B. D./09/29/2022.
57 Vgl. jwmsft (2022).
58 Vgl. Windows Presentation Foundation | WPF und .NET.
59 Vgl. What is WPF? - The complete WPF tutorial.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 83

10.4.2 Aufbau

Der grundlegende Aufbau des WPF-Projekts bleibt im Grunde gleich. Jedoch wird hierbei nicht

das Community-Toolkit verwendet, wodurch mehrere Funktionen selbst implementiert werden

müssen.

Somit werden weitere Ordner für die Organisation dieser Funktionen benötigt

10.4.3 Design

Um der Applikation eine moderne Benutzeroberfläche zu verleihen, wird ein vorgefertigtes

„Theme“ verwendet. Dabei handelt es sich um das „DarkTheme“ von „AngryCarrot789“

welches frei verwendet werden kann. In der folgenden Abbildung sind die einzelnen Designs

der UI-Elemente abgebildet.60

Abbildung 47: WPFDarkTheme

Um das Theme zu aktivieren werden die benötigten Dateien im entsprechenden Ordner

„Themes“ abgelegt. Anschließend müssen diese noch im „App.xaml“ aktiviert werden. Dies ist

60 Vgl. REghZy (2023).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 84

eine spezielle Datei, welche die Anwendungsressourcen und das globale Verhalten der

Anwendung definiert. Sie wird automatisch beim Erstellen eines neuen WPF-Projekts in Visual

Studio erstellt und definiert die Standard-Startklasse der Anwendung und die Standardfarben,

Schriftarten und Stile, die in der Anwendung verwendet werden sollen.61

Unter dem Knotenpunkt „Resourcen“ kann nun der Pfad für das entsprechende Theme

festgelegt werden.

10.4.4 Implementation der Commands

Für die Implementation der Commands wird hierbei eine Basisklasse erstellt, von welcher die

einzelnen Commands erben

Die CanExecute-Funktion gibt an, wann ein Command ausgeführt werden kann. Dieser ist

standardmäßig immer auf „Wahr“ gesetzt. Die wirklichen Anweisungen eines Commands

befinden sich in der Execute-Methode, welche von den einzelnen Instanzen überschrieben

werden können.

Beispiel:

Im folgendem Code-Abschnitt wird ein Command erstellt, welcher bei Aktivierung einen neuen

Modus zur bestehenden Liste hinzufügt und anschließend das UI benachrichtigt.

61 Vgl. Working with App.xaml - The complete WPF tutorial.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 85

10.4.5 Implementierung MVVM

Die Umsetzung des Model-View-ViewModel-Musters bleibt zur vorherigen Version nahezu

identisch. Auch hier wird im Hauptfenster definiert, welches View zu welchem ViewModel

angezeigt wird.

Dies geschieht bei dieser Umsetzung mittels „DataTemplates“. Dies sind Vorlagen, welche

definieren, wie bestimmte Elemente dargestellt werden sollen.

Anschließend wird festgelegt, wo das derzeitige ViewModel zu finden ist. Dabei wird auf das

„CurrentViewModel“ der Klasse „MainViewModel“ gebunden.

Das MainViewModel enthält immer das derzeitige ViewModel und wird aktualisiert, sobald sich

dieses ändert. Ein Wechsel der ViewModels kann durch den „NavigationStore“ erfolgen. Dies

ist eine statische Klasse und trägt dies als ihre einzige Aufgabe.

10.4.6 Informationen zur Bridge

Das Prinzip der BridgeStatusView bleibt gleich zur vorherigen Version. Zusätzlich wird noch

eine Abbildung eingefügt, welche die Verbindung symbolisiert.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 86

Abbildung 48: Bridge-Dashboard (Connected)

In dieser Abbildung wird keine valide IP-Adresse angezeigt, da hier die Applikation im Debug-

Modus ausgeführt wird. Sollte keine Verbindung bestehen, so erscheint die Abbildung grau

und der „Connect“-Button ist aktiviert.

Abbildung 49: Bridge-Dashboard (Disconnected)

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 87

10.4.7 Einstellungen der Schalter

Im Gegensatz zur ursprünglichen Version werden hier Elemente entfernt, welche als nicht-

notwendig eingestuft wurden. Dabei handelt es sich beispielsweise um die ID des Smart-

Switches. Das grundlegende User-Interface bleibt jedoch gleich.

Abbildung 50: Mode-Config

In der obigen Abbildung ist der derzeitig gespeicherte Smart-Switch mit dem Namen „switchy“

abgebildet. Dieser befindet sich im aktiven Zustand und der eingestellte Modus kann frei

verändert werden.

10.4.8 Konfiguration der Modis

Das Interface dieses Abteils ist so abgesichert, dass es fehlerhafte Eingaben des Benutzers

korrigiert. Beispielsweise wird eine Uhrzeit-Charakteristik auf 00:00 zurückgesetzt, sollte der

eingegebene Wert die möglichen Uhrzeiten eines Tages überschreiten.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 88

Abbildung 51: Switch-Config

Hier abgebildet sind die Einstellungen des Modus „einModus“, welcher zwei Characterisiken

besitzt. Der Modus wird aktiviert, wenn es sich um die Uhrzeit 1:00 handelt und die Temperatur

nicht 21 Grad Celsius beträgt.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 89

11 KOMMUNIKATION

11.1 Grundidee

Um einen Austausch von Informationen zu ermöglichen, bedarf es einer Kommunikation

zwischen den einzelnen Komponenten. Dabei werden standardisierte Kommunikationsarten

verwendet.

11.2 Zwischen Bridge und Client

11.2.1 Nutzen

Damit die Bridge die nötigen Einstellungen erhält, um den Schalter zu steuern, bedarf es an

Informationen, welche vom Benutzer (Client) versendet werden.

11.2.2 Wahl der Kommunikationsart

Die Art der Kommunikation muss so gewählt werden, dass diese auch über eine lange Distanz

noch aufrecht bleibt. Hierbei fällt die Wahl auf das Open Systems Interconnection Modell (OSI).

Dieses Modell wurde 1984 eingeführt und beschreibt Regeln und Standards, wie

Anwendungen und Netzwerkinfrastrukturen aussehen sollen. Genauere Erklärungen können

im Anhang gefunden werden

11.2.3 Codierung

Um die Kommunikation zu beschleunigen, wird die Größe einer Nachricht komprimiert. Dies

entsteht durch eine Vereinbarung der beiden Parteien, welche in einer Session

kommunizieren. Deshalb wurde hierbei eine eigene Codierung entwickelt.

11.2.3.1 Vergleich der Lösungswege

Eine Möglichkeit zur Codierung wäre die Daten in klarem Text zu übertragen. Dabei würden

die Zeichen durch ein Semicolon „;“ abgegrenzt.

Beispiel: „ID:2212,GETSTATE“

Die andere Möglichkeit wäre, den einzelnen Bits eine spezielle Rolle zuzuteilen. Falls dennoch

Text übertragen werden soll, kann dieser dennoch in den vorgesehenen Feldern

abgespeichert werden

Beispiel: „00111001101“ -> Erste 2 Bits: Markierung, 3->6 Zeitstempel, …

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 90

Direkte Übertragung der Daten in Text Wertigkeit auf Bits

Direkt lesbar /Schreibbar Bits müssen nach je nach Rolle den

richtigen Bits zugewiesen werden

Höherer Speicherplatz benötigt

(Durch Text)

Durch spezielle Zuweisung der Bits wird der

Platzverbrauch minimal gehalten

Da der Fokus der Kommunikation auf Schnelligkeit und Effizienz beruht, wird hierbei die

Möglichkeit 2 verwendet.

11.2.3.2 Definition

Eine Nachricht wird hierbei in sieben Abschnitte eingeteilt, wobei die ersten 3 Nachrichten als

„Header“ angesehen werden.

Markierung: Beide benötigten Protokolle werden jeweils mit einer Start- und Endmarkierung

versehen, welche anfangs 2 Bytes und am Ende 3 Bytes besitzen. Diese Felder sind

notwendig, um die Daten in einem Stream zu erkennen und exportieren zu können.

Länge: In diesem Feld wird die Länge angegeben, welche der Nicht-Header-Anteil besitzt.

Dies ist notwendig, da Anzahl der gesendeten Daten variiert.

Checksumme: Zur Verifizierung und Integrität der Nachricht wird eine Checksumme im Header

eingefügt. Diese berechnet sich ausfolgender aus der Summe aller Bytes % 4.

Bei diesem Verfahren werden alle Bits des „Data“- Anteiles der Nachricht (Gegenstück des

Headers) summiert und anschließend durch 8 (Anzahl der Bits eines Bytes) dividiert. Der

dadurch entstehende Rest stellt nun die gesuchte Checksumme dar. Tritt bei der Überprüfung

der Checksumme ein Fehler auf, wird das „Command“-Feld der Nachricht auf „Invalid“ (0001)

gesetzt.

ID: Das ID-Feld besteht nur aus Legacy-Gründen. Da dieses Protokoll ursprünglich auch zur

Kommunikation zwischen Bridge und Schalter genutzt werden sollte, musste die ID des Smart-

Switches in der Nachricht abgespeichert werden. In der derzeitigen Version des Systems trägt

dieses Feld keine Bedeutung.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 91

Data: In diesem Feld werden echten Daten untergebracht. Dies können wieder Bits sein,

welche eine eigene Bedeutung tragen oder auch einfacher Text.

Art der Nachricht: Zur Identifikation der Nachricht ist das „Command“-Feld zuständig, welches

mittels einer 4-Bit Nummer die Nachricht genau identifiziert.

In der obigen Abbildung sind 10 verschiedene Kommando-Typen abgebildet. Jede Nachricht

(mit Ausnahme von „Invalid“ und „SetSwitchState“) erhält dabei jeweils ein „Reply“-

Gegenstück, welches die Antwort auf die gesendete Nachricht kennzeichnet. Soll vom Client

ein Wert überschrieben werden, so wird dieser Typ wiederverwendet. Somit muss für diese

Nachricht kein eigener Wert verwendet werden.

11.2.4 Anwendung

11.2.4.1 Beschreibung

Die Bridge stellt bei dieser Kommunikation den Server dar, mit welchem sich ein Client

verbinden kann. Die Bridge besitzt dabei den vordefinierten Hostname „usw-bridge“, damit

diese in einem Netzwerk gefunden werden kann. Über diese Methode erhält der Client die IP-

Adresse der Bridge, welche für die Verbindung notwendig ist. Der Server der Bridge läuft dabei

auf dem vordefiniertem Port 5000. Dies ist eine Art Tor, welche einer Anwendung zugeteilt

wurde.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 92

11.2.4.2 Implementation Bridge

11.2.4.2.1 Network-Manager (Bridge)

Der grundsätzliche Austausch von Daten zwischen dem Client und der Bridge wird dabei in

der Klasse „NetworkManager“ abgearbeitet.

Zur Implementation wird auf die Standard-Bibliothek „TCPServer“ zurückgegriffen, welche alle

benötigten Funktionen zur Implementierung bereits inkludiert.

Die folgende Methode startet einen neuen TCP-Server, welcher bis zur Beendung des

Programmes laufen soll und teilt ihm die Methode „EchoHandler“ als Handler zu.

Ein Handler ist dabei eine Methode, welche aufgerufen wird, wenn ein spezielles Event auftritt.

In diesem Falle wäre dies ein Verbindungsversuch ausgehend von einem Client.

Dieser Handler wartet auf den Empfang einer neuen Nachricht, welche in der Variable „msg“

abgespeichert wird. Anschließend wird diese mittels der Funktion „BCValidateMessage“

Klasse „MessageController“ decoded. Wenn eine Flagge für das Versenden einer Nachricht

aktiviert wurde, wird diese Nachricht abgesendet und die Flagge anschließend wieder

deaktiviert.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 93

Um eine Nachricht zu senden, wird die Funktion „RequestToSend“ aufgerufen, und dieser die

Nachricht als Parameter übergeben. Anschließend wird die Nachricht in der Klasse für globale

Objekte und Variablen („GlobalStates“) abgespeichert. Um das Versenden zu ermöglichen,

wird dabei die vorher besprochene Flagge gesetzt.

11.2.4.2.2 Message-Manager

Dieses Abteil des Programmes ist für die Codierung und Decodierung von Nachrichten

zuständig.

BCMessage: Diese Klasse stellt eine Nachricht dar, welche für die Kommunikation verwendet

werden kann. Ein Objekt dieser Klasse beinhaltet neben den einzelnen Felder der Codierung

lediglich eine Liste aller Bytes („fullMessage“), eine Liste des Daten-Anteils („data“), eine

Flagge, welche die Zuverlässigkeit der Nachricht beinhaltet („correct“) und das Kommando als

Enumeration. Letzteres ist ein Datentyp, welcher einen Wert einer vordefinierten Aufzählung

annehmen kann. Die Aufzählung wird hierbei durch die 10 Arten der Kommandos gebildet.

Zur Erstellung einer Nachricht bedarf es der Funktion „CrateFromScratch“. Deren Parameter

sind die ID, das Kommando als Enum und die Daten als Bytes. Zuerst werden alle Parameter

abgespeichert und überprüft, ob es sich bei den Daten um einen akzeptierbaren Wert handelt.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 94

Anschließend werden alle Felder der Codierung nacheinander in die Liste eingefügt. Hierbei

ein Beispiel anhand der Endmarkierung:

Für die Berechnung der Checksumme wird wiederum eine weitere Methode

(„CalcCheckSum“) zur Hilfe genommen. Diese wurde als eigene implementiert, um diese bei

der Decodierung wiederzuverwenden.

Für die Decodierung einer Nachricht ist die Methode „CreateFromRaw“ zuständig, dessen

einziger Parameter die empfangene Nachricht ist, welche an die Liste der gesamten Daten

angehängt wird. Anschließend werden alle Felder aus der Nachricht gelesen und entfernt. Die

erhaltene Checksumme wird mit der Berechneten abgeglichen. Sollten diese Werte nicht

übereinstimmen, so wird die Flagge, sowohl als auch das Kommando auf „Invalid/False“

gestellt.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 95

11.2.4.3 Implementation Client

11.2.4.3.1 Network-Manager (Client)

Auch hier übernimmt eine gleichnamige Klasse „NetworkManager“ die Aufgabe der

Kommunikation.

In der Methode „Connect“ wird versucht, eine Verbindung mit der Bridge aufzubauen. Zuerst

ruft diese eine Weitere Methode „Search“ auf, um die Bridge im Netzwerk zu suchen.

Hierbei wird die erste IPv4-Adresse mit dem passenden Hostname ausgewählt. Wenn keine

dieser Adressen passt, wird angenommen, dass die Bridge nicht auffindbar ist und die

Funktion gibt den Werte „false „ (Falsch) zurück. Dies geschieht auch, wenn ein Fehler bei der

Suche auftritt.

Die Überprüfung, ob eine IP-Adresse auch eine gültige IPv4 Adresse ist, wird in der Methode

„CheckIfIPv4“ abgearbeitet.

Hierbei werden „Regular Expressions“ (RegEx) verwendet. Dies sind Zeichenketten zur

Beschreibung von Mustern innerhalb eines Strings. Ein RegEx besteht aus einer Kombination

aus Literal- und Metazeichen. Literalzeichen beschreiben genau die Zeichen, welche gefunden

werden sollen, während Metazeichen bestimmte Arten von Mustern beschreiben. Beispiele für

Metazeichen sind Sterne, Punkte und Fragezeichen. Die dabei verwendete Zeichenkette

wurde dabei von einer Internet-Quelle übernommen.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 96

Wenn die Voraussetzungen für eine IPv4 Adresse stimmen, erhält der Rückgabewert den

Zustand „true“, ansonsten „false“. Wie auch bei der Suchfunktion wird dieser Wert auch

zurückgegeben, wenn ein Fehler auftreten sollte.

Kann die Bridge erfolgreich gefunden werden, so wird ein neues Objekt der Klasse TCP-Client

erstellt, welche durch das „Simple-TCP“ Nuget Packet bereitgestellt wird.

Anschließend werden diesem Objekt mehrere Methoden angebunden, welche bei Auftreten

verschiedener Events aufgerufen werden. Zum Abschluss wird der TCP-Client gestartet. Sollte

hierbei ein Fehler auftreten, wird dieser von dem Try-Catch-Block aufgefangen und die

entsprechende Flagge gesetzt.

Für das Empfangen einer Nachricht wird ein Task verwendet. Ein Task stellt in C# eine

asynchrone Operation dar. Diese läuft parallel zum Haupt-Thread des Programmes ab. Beim

Empfang einer Nachricht wird diese in eine Liste eingefügt. Sollte dieser Ein (End-) Markierung

enthalten, wird angenommen, dass es sich hierbei um eine echte Nachricht handelt. Diese

wird anschließend decodiert und dem „Message-Controller“ übergeben.

Der Ablauf zur Decodierung einer Nachricht ist nahezu identisch mit dem der Bridge. Die

einzigen Unterschiede stellen hierbei zumal der Syntax als auch die Properties dar.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 97

11.3 Zwischen Bridge und Schalter

11.3.1 Allgemeines

Die Kommunikation zwischen der Bridge und den Schaltern muss natürlich einigen

Anforderungen entsprechen. Die Bridge sollte eine möglichst hohe Anzahl an Schaltern

verwalten können. Die zu übertragenden Datenpakete sind allerdings sehr klein, zeitlich stellt

dies deshalb kein großes Problem dar. Die Reichweite, also die Entfernung, in der sich die

Schalter von der Bridge befinden, ist allerdings kritisch. Soll beispielsweise ein großes Haus

ausgestattet werden, so ist es möglich, dass suboptimaler Weise mehrere Bridges benötigt

werden. Die Kommunikation muss weiters in beide Richtungen möglich sein. Bridge zu

Schalter, um Kommandos versenden zu können und in die andere Richtung um

Temperaturdaten zu Übertragen. Ebenfalls muss die Verbindung zwischen den Geräten mit

dem Anschließen des Schalters ans Stromnetz automatisch geschehen.

11.3.2 Mögliche Übertragungsarten

Bluetooth (BLE)

Bluetooth bietet uns eine mehr als genügende Datenrate. Die nicht allzu große Reichweite

stellt allerdings ein Problem dar, diese hängt unter anderem von der Version der Bluetooth

Kommunikation ab. Für größere Reichweiten werden allerdings Versionsunabhängig sehr

hohe Energiemengen benötigt (Siehe Kapitel 8.4.7.2). Eine mögliche Lösung dafür wäre ein

Mesh-Netzwerk. Mit Bluetooth Versionen ab 4.0 und den dazugehörigen Low-Energy Modes

kann auch eine energieeffiziente Übertragung erreicht werden. Ebenfalls hat unsere

Partnerfirma bereits Erfahrung mit Bluetooth.62

BLE (Bluetooth Low Energy) ist der ideale Bluetooth Modus für uns. Er eignet sich speziell für

nicht frequente kurze Kommunikationen mit geringer Datenmenge, was genau unseren

Anforderungen entspricht. Es gibt auch bereits viele Dokumentationen für die Implementation

von BLE.

Zigbee

Zigbee ist eine Kommunikationsmöglichkeit, die ähnlich wie Bluetooth funktioniert, allerdings

ist die Reichweite etwas höher und die Datenrate ist etwas niedriger. Das macht es für uns zu

einer attraktiven Möglichkeit. Allerdings haben wir kein Vorwissen und keine Erfahrung mit der

Technologie und die Dokumentation ist ebenfalls schlechter als beispielsweise BLE. Deshalb

wird BLE gewählt.

62 Intro zu Bluetooth Stromverbrauch | Bluetooth® Technologie Website (2017).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 98

Powerline Kommunikation

Bei der Powerline Kommunikation werden die Daten direkt über die Stromleitung versandt. Da

der Anschluss sowieso benötigt wird ist dies eine elegante Lösung. Reichweitetechnisch wäre

sie auch ideal für uns, da wir problemlos durch das ganze Haus kommunizieren könnten. Die

Datenrate wäre ebenfalls mehr als hoch genug, allerdings ist das Modul, das für diese

Kommunikation in jeden Schalter eingebaut werden müsste, relativ groß. Da es sowieso schon

mit Platzproblemen zu kämpfen ist, ist dies kritisch. Die Technologie ist auch noch nicht so

ausgereift wie die Alternativen. Das macht die Implementation sehr aufwendig und kompliziert,

oft entstehen Datenlecks oder dergleichen, aufgrund der rauschenden Netzspannung.

Deshalb wurde diese Übertragungsart nicht gewählt.

Wlan

Wlan wäre neben Bluetooth die uns am besten vertraute Art der Übertragung. Bluetooth bietet

allerdings eine größere Reichweite für den gleichen Energieverbrauch an, was für unseren

Verwendungszweck einen hohen Stellenwert hat. Weiters müsste ein eigenes WLAN-

Netzwerk aufgespannt werden, um die automatische Verbindung zwischen Bridge und

Schalter zu ermöglichen, dies benötigt erneut eine größere Menge an Energie.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite 99

11.3.3 Bluetooth Low Energy (BLE)

11.3.3.1 Theorie

Die gewählte Kommunikationsart BLE ist im Vergleich zu herkömmlichem Bluetooth recht

aufwendig. Da der Aufbau um einiges komplizierter ist. Grundsätzlich handelt es sich aber

auch bei BLE um eine serielle Schnittstelle, über welche die Daten gesendet werden.

11.3.3.1.1 Verbindungsarten

Punkt zu Punkt

Zwei Geräte verbinden sich direkt miteinander, die Bridge verbindet sich also mit jedem

Schalter direkt, um den Datenaustausch zu ermöglichen. Die übliche Datenrate von 1,4 Mb/s

sinkt zwar stark aufgrund der multiplen Verbindungen, das ist für unsere winzigen Datenpakete

aber wie gesagt irrelevant. Das ist auch die verwendete Verbindungsvariante.

Abbildung 52: BLE-Point to Point

Mesh Netzwerk

Bei einem Mesh Netzwerk können viele unterschiedliche Geräte miteinander verbunden

werden. Jedes Gerät kann selbst Nachrichten verschicken oder weiterleiten, so ist es möglich

das Problem der Reichweite quasi zu eliminieren. Der Datenverkehr wird so natürlich deutlich

erhöht, mit der Datenrate von 3,45 kbit/s ist das allerdings kein Problem. Aufgrund des höheren

Implementationsaufwands wurde diese Variante noch nicht realisiert, bietet aber eine gute

Erweiterungsmöglichkeit.

Abbildung 53: BLE Mesh Netzwerk

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

100

11.3.3.1.2 GAP

Die wichtigste Definition im Generic Access Profile (GAP) ist der Aufbau einer Verbindung

zwischen zwei Geräten. Dabei wird bei der BLE Punkt zu Punkt Verbindungen zwischen dem

Zentrum und der Peripherie unterschieden. Das Zentrum nimmt die Master Rolle ein und

verbraucht gleichzeitig den Großteil der Rechenleistung, diese Rolle nimmt bei uns deshalb

die Bridge ein. Die Peripherie, bei uns der Schalter, übernimmt die Slave Rolle.

Die Peripheriegeräte können sich nur mit einem Zentrum verbinden. Müssen also Daten von

einem Schalter zum anderen geschickt werden geschieht dies über das Zentrum.

Um von der Bridge für einen Verbindungsaufbau erkannt werden zu können, muss der

Schalter in den General Discoverable Mode gesetzt werden.

Abbildung 55: BLE Advertising Flag

Abbildung 54: GAP Funktionalität

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

101

Weiters muss die Peripherie als Directed Connectable operiert werden. Dies ermöglicht bei

einem Verbindungsverlust eine sehr schnelle Wiederverbindung und da es nur ein Zentrum

gibt ist das Verbinden mit anderen Geräten irrelevant.

Um schlussendlich eine Verbindung aufzubauen muss der korrekte Advertising Modus

ausgewählt werden, in unserem Fall: 63

Das GAP verfügt ebenfalls über hervorragende Sicherheitsprotokolle, diese werden in den

vordefinierten Bibliotheken bereits automatisch eingebunden. Beim Schalter wurde

beispielsweise die Arduino BLE Library verwendet.64

11.3.3.1.3 GATT

Allgemeines

Das Generic Attribute Profile (GATT) ist für den tatsächlichen Datenaustausch zwischen

Schalter und Bridge verantwortlich. Auch wenn durch GAP mehrere „gleichzeitige“

Verbindungen hergestellt werden können. Kann man immer nur zwischen 2 Punkt zu Punkt

verbundenen Geräten kommuniziert werden. Das heißt die Bridge muss sich mit der

Kommunikation mit den verschiedenen Schaltern abwechseln.

Das Zentrum heißt hier GATT-Client und die Peripheriegeräte GATT-Server. Der

Datenaustausch funktioniert in dem ein GATT-Server (der Schalter) eine Anfrage an den Client

(die Bridge) sendet. Diese antwortet dann mit einer entsprechenden Antwort. Was für Daten

in was für einem Format genau versendet werden, ist in der Attribut Protokoll Tabelle (ATT)

vordefiniert und wird Profil genannt. Man kann der Tabelle auch eigene Profile hinzufügen. 65

Protokoll

63 Vgl. Lesson 2 – BLE profiles, services, characteristics, device roles and network topology (2019).
64 Vgl. ArduinoBLE (2023).
65 Vgl. Afaneh, M. (2020).

Type: StartMark CheckSum ID Command Data EndMark

Size: 2Byte 1Byte 1Byte 1Byte 1Byte 2Byte

Used to
recognize

message in
stream of

data

Check if
message

was
sent/received

correctly
= Bits after

CS % 8

Unique
device ID

Information
of

messag type
Raw data

Used to
recognize

message in
stream of

data

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

102

Kommando Typen

Type: Invalid GetState GetStateRep GetTemp GetTempRep EchoRequest EchoReply

Send by: - Bridge Bridge/Switch Bridge Switch -
In Bits: 0001 0010 0011 0100 0101 0110 0111

Only
obtained

if
error

occurred

Request
value

of current
switch
state

Real value of
state

Can act as->
1. Reply of

0010
2. Setting

state

Get
temperature

value of
sensor

Response to
0011

Aufbau der Profile

Ein solches Profil besteht aus Services und den diesen untergeordneten Charakteristiken.

Diese sind jeweils mit einer UUID (Universal unique identifier) gekennzeichnet und können mit

dieser aufgerufen werden. Dabei werden UUIDs zwischen 16 Bit und 128 Bit an Länge

unterschieden. Die 16 Bit IDs sind bereits vordefiniert, während die 128 Bit IDs selbst definiert

werden können, was wir in unserem Fall auch getan haben. Das gilt sowohl für die Services

als auch die Charakteristiken. 66

66 about-ble-server-profile-20-1024.jpg (1024×768).

Abbildung 56: GATT-Tabelle

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

103

Ein Service ist also eine Einheit, die erstellt werden muss, um eine gewisse Aufgabe zu

erfüllen, in unserem Fall die Kommunikation zwischen Schalter und Bridge. Untergeordnet

können mehrere Charakteristiken erstellt werden, die die genauen Spezifikationen einer

Nachricht enthalten Für unsere Zwecke wird nur eine einzige Charakteristik benötigt, welche

das Kommunikationsprotokoll enthält. Es wird deshalb jeweils eine selbst definierte UUID

vergeben. Diese haben wir über einen Generator erhalten.67

Es gibt auch noch weitere Teile, die in einem Profil enthalten sind, beispielsweise Descriptor,

die verwendet werden, um zusätzliche Informationen über ein Profil, einen Service oder eine

Charakteristik zu bieten. Diese wurden aufgrund der Übersicht ebenfalls hinzugefügt, um sie

kennzeichnen zu können haben sie ebenfalls eine UUID.68 69

11.3.3.2 Praxis

Die Bluetooth-Verbindung wird gestartet und alle nötigen Parameter werden definiert.

67 Online UUID Generator Tool.
68 Lesson 2 – BLE profiles, services, characteristics, device roles and network topology (2019).
69 Introduction to Bluetooth Low Energy.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

104

Unten zu sehen sind die Daten, welche vom Schalter bei der BLE-Übertragung für den Client

sichtbar sind. Aufgrund eines Problems mit dem Descriptor, haben sowohl Service als auch

Charakteristik keinen Namen. Die grafische Datendarstellung wurde mithilfe des NrF-Connect

am Smartphone gemacht. Dabei handelt es sich um eine App welche Bluetooth Verbindungen

aufbauen kann und die entsprechenden Daten ausgibt.

Abbildung 57: BLE Verbindung Handy

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

105

12 INSTALLATIONSANLEITUNG

Das Ziel ist es die Installation so einfach wie möglich zu gestalten, aber trotzdem möglichst

universell anwendbar zu sein. Die gewählte Lösung war es hierbei Ein- und Ausgänge für

Phase, Nullleiter und Erdung anzubringen. Ist nur ein Nullleiter und oder eine Erdung

vorhanden, so kann jeweils ein beliebiger der beiden Pins angeschlossen werden. Die

Erdung ist zwar für die Funktionalität nicht relevant, muss aber aus Sicherheitsgründen

angeschlossen werden. Wird der Schalter nach der Installation gegen Berührungen

vollständig geschützt ist dürfen die Erdungsanschlüsse offengelassen werden. Zusätzlich ist

hier empfohlen die Erdung des Niederspannungsanteils über den vorgesehenen Pin (Siehe

Kapitel 8.5.2.2.2) an dem Gehäuse zu befestigen.

Der Anschluss erfolgt über zwei 3-polige Schraubklemmen Ein- und Ausgang müssen dabei

korrekt angeschlossen werden (Siehe Kapitel 15.2).

WICHTIG

Während der Installation muss der Strom im entsprechenden Raum unbedingt abgestellt

werden. Dabei sind die 5 klassischen Sicherheitsregeln zu beachten. 70

70 Adam, B. (2020).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

106

12 DANKESWORTE

An dieser Stelle möchten wir uns herzlich bei alle denjenigen bedanken, die uns geholfen

haben, diese Diplomarbeit zu verfassen. Zum einen ist unser Betreuungslehrer Herr Bischof,

unserem Firmenbetreuer Joseph Kruijen und zum andern Erika Kicker, die uns unsere Texte

Korrektur gelesen hat.

Vielen Dank.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

107

13 ABBILDUNGSVERZEICHNIS

Abbildung 1: Projektplan Gantt Chart ... 13

Abbildung 2: Gesamtsystem Blockschaltbild detailiert .. 15

Abbildung 3: ESP DevKit ... 18

Abbildung 4: ESP DevKit Anschluss V1 ... 20

Abbildung 5: ESP SPI und JTAG-Schnittstellen ... 21

Abbildung 6: Temperatur Sensor Anschluss V1 ... 22

Abbildung 7: Befehlsstruktur Temperatur Sensor ... 23

Abbildung 8: Flussdiagramm Temperatur Sensor .. 24

Abbildung 9: Kartenrelais V1 .. 26

Abbildung 10: JTAG Schnittstelle V1 ... 27

Abbildung 11: Netzspannungsbereich Verletzung V1... 28

Abbildung 12: Temperatur Sensor suboptimaler Anschluss V1 .. 28

Abbildung 13: Schalter V1 ... 29

Abbildung 14: Stormmessung DevKit BLE ... 31

Abbildung 15: Messung mit Analog Discovery ... 32

Abbildung 16: SPI-Signal ... 32

Abbildung 17: Smart-Switch Version 2 in Buchse .. 33

Abbildung 18: Netzteil V2 ... 34

Abbildung 19: Linearregler V2 .. 35

Abbildung 20: Sicherung V2... 35

Abbildung 21: Solid State Relais V2 ... 36

Abbildung 22: Temperatursensor V2 .. 37

Abbildung 23: USB Anschluss V2 .. 38

Abbildung 24: Testpin V2 ... 39

Abbildung 25: Tasteranschluss V2 .. 39

Abbildung 26: Spannungsversorgung ESP V2 ... 40

Abbildung 27: Bottom Bauteile Layout V2 .. 41

Abbildung 28: Größte Diagonale .. 42

Abbildung 29: Thermische Schaltung V2 ... 43

Abbildung 30: ESP Low Power Modis .. 46

Abbildung 31: BLE-Stromverbrauch ... 47

Abbildung 32: Sicherungsanschluss .. 48

Abbildung 33: Espressif IDF in VS Code .. 49

Abbildung 34: CMake Speichpfad Fehler ... 50

Abbildung 35: CMake Ninja Fehlermeldung ... 50

Abbildung 36: Arduino IDE Funktionen .. 51

Abbildung 37: Raspberry-Pi Zero ... 52

Abbildung 38: Raspberry-Pi 4B .. 53

Abbildung 39: Raspberry-Pi 4B Case ... 53

Abbildung 40: Raspberry-Pi Imager ... 54

Abbildung 41: CLI-Client .. 70

Abbildung 42: .NET MAUI Layers .. 71

Abbildung 43: .NET MAUI Layers (Specific) ... 72

Abbildung 44: Bridge-Dashboard (V1) ... 78

Abbildung 45: Devices-Overview ... 80

Abbildung 46: Mode-Management (V1).. 81

https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021485
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021487
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021488
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021489
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021490
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021492
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021493
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021494
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021495
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021496
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021497
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021499
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021500
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021501
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021502
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021503
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021504
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021505
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021506
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021507
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021508
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021509
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021510
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021511
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021512
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021513
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021515
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021516
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021517
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021518
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021519
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021520

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

108

Abbildung 47: WPFDarkTheme ... 83

Abbildung 48: Bridge-Dashboard (Connected) ... 86

Abbildung 49: Bridge-Dashboard (Disconnected) .. 86

Abbildung 50: Mode-Config.. 87

Abbildung 51: Switch-Config .. 88

Abbildung 52: BLE-Point to Point ... 99

Abbildung 53: BLE Mesh Netzwerk .. 99

Abbildung 54: GAP Funktionalität .. 100

Abbildung 55: BLE Advertising Flag ... 100

Abbildung 56: GATT-Tabelle .. 102

Abbildung 57: BLE Verbindung Handy ... 104

Abbildung 58: USB Pinbelegung .. 118

Abbildung 59: GitHub Key .. 125

Abbildung 60: VSCode ... 125

Abbildung 61: .NET Layers .. 130

Abbildung 62: Visual-Studio Installer .. 132

Abbildung 63: GitHub-Desktop ... 133

Abbildung 64: OSI-Modell .. 134

https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021538
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021539
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021540
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021541
https://htlr-my.sharepoint.com/personal/tim_kicker_student_htl-rankweil_at/Documents/School/HTL_Rankweil/Diplomarbeit/SmartSwitch/Dokumentation/Main3.docx#_Toc131021542

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

109

14 FORTSCHRITTSBERICHT

14.1 Teammitglied 1 (Johannes Klapper)

DATUM WAS STUNDEN

19.09.2022 Recherche existierende Wandschalter 4

26.09.2022 Details zur Umsetzung festlegen 4

03.10.2022 Planung Projekt 3

10.10.2022 Planung Projekt

Recherche Umsetzbarkeit

4

17.10.2022 Auswahl der Übertragungsart 4

19.10.2022 Konzept festlegen

Mikrocontroller Recherche

3.5

24.10.2022 Schaltplan Schalter v1 erstellt 4

07.11.2022 Temperatur Sensor und Mikrocontroller Auswahl

Dev-Kit bestellt

Schaltung überarbeitet

4

09.11.2022 Bauteil Librarys und Layout erstellt 3

13.11.2022 Layout finalisiert 2

14.11.2022 Gerber Files erstellt

Platine bestellt

4

17.11.2022 Einstieg in ESP-IDF 5

21.11.2022 Fehlerbehebung Cmake

Testprogramm DevKit

6

28.11.2022 Erneute Fehlerbehebung Cmake

Testprogramm Relais

4

05.12.2022 Einstieg Arduino IDE

Testprogramme erneut (+Temperatur Sensor)

4.5

11.12.2022 Bestückung Schalter v1

Testung

2.5

12.12.2022 Temperatur Sensor Programmänderung 4

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

110

16.12.2022 Testung Schalter v1 gesamt 5

19.12.2022 Planung Schalter v2 4

08.01.2023 Bauteilauswahl

Librarys erstellen

5

09.01.2023 Librarys erstellen und Schaltung planen 3

16.01.2023 Schaltung erstellen

BLE-Implementierung

4

18.01.2023 BLE Testung/Fehlerbehebung 2.5

19.01.2023 BLE Testung/Fehlerbehebung

Verbindungsaufbau Handy erfolgreich

2

06.02.2023 Schaltplan fertigstellen

Layout beginnen

4

09.02.2023 Layout Neustart (Größenvorgaben) 3

16.02.2023 Implementation BLE 5

20.02.2023 Layout anpassen 3

21.02.2023 Layout und Schaltplan anpassen

Bauteile bestellen

4.5

27.02.2023 Layout finalisieren 4

02.03.2023 SPI-Programmierung 2.5

03.03.2023 Platine Schalter v2 bestellen 2

06.03.2023 SPI-Programmierung

Bauteile nachbestellen

4

07.03.2023 Dokumentation beginne 5

08.03.2023 Programmanpassung Temperatur Sensor

Berechnungen Temperatur Sensor

5.5

13.03.2023 Dokumentation 4

14.03.2023 Gehäuse erstellen 4.5

16.03.2023 Dokumentation 2

18.03.2023 Dokumentation finalisieren 5.5

19.03.2023 Dokumentation beenden 4.5

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

111

14.2 Teammitglied 2 (Tim Kicker)

DATUM WAS STUNDEN

19.09.2022 Recherche Wandschalter etc. 4

26.09.2022 Planung Projekt 4

03.10.2022 Recherche/Planung Frameworks etc.
Aufstellung Struktur (Klassen etc.)

4

10.10.2022 Grundstrukturen (MVVM, etc.).
Erstellung Git Repos

Aufsetzung Entwicklungsumgebung (VS,VSC über SSH

4

13.10.2022 Raspi aufsetzen + Einrichtung 2

14.10.2022 Erstellung DefinedInformation, GlobalStates,
MessageManager und ModeManager

3

16.10.2022 Erstellen und Lesen von Nachrichten
(Client & Bridge)

7

17.10.2022 Weiterarbeitung Nachrichten 4

24.10.2022 Implementation Klassen Modes, Switches, etc.
Checksumme/Überprüfung von Nachrichten

4

07.11.2022 Abprüfen von Modis, Beginn Kommunikation 4

14.11.2022 Kommunikation (Client <-> Bridge) 4

20.11.2022 Kommunikation (Client <-> Bridge) 5

21.11.2022 Autofind + Connect (Client <-> Bridge) 4

23.11.2022 Bugfixing Checksumme 3

28.11.2022 Serialize Modes/Switches zu XML,
Deserialize Modes

4

01.12.2022 Read/Load XML von Messages 3.5

05.12.2022 Install-Script erstellen (Bash),
Bugfixing TCP-Server/Client

4

10.12.2022 Recherche .NET MAUI 3

11.12.2022 Demoprojekt + Übung MAUI 4

12.12.2022 Erstellung MAUI-Projekt,
Implementierung MVVM + Grundstruktur

4

18.12.2022 Planung + Erstellung UI-MAUI 5

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

112

19.12.2022 Verknüpfung Basis- und MAUI-Projekt 4

28.12.2022 Bugfixing .NET MAUI 7

04.01.2023 Recherche Alternative MAUI 2

06.01.2023 Besprechung Framework-Wechstel 1.5

09.01.2023 Beginn Neuimplementation in WPF 4

14.01.2023 Neuimplementation in WPF 3

16.12.2023 Mode-Executor (Bridge) 4

23.01.2023 Weiterführung WPF-Implementation 4

28.01.2023 Planung Bluetooth-Verbindung 3

30.01.2023 Implementation Bluetooth-Verbindung 4

04.06.2023 Implementation Bluetooth-Verbindung 4.5

06.02.2023 Testung Bluetooth-Verbindung
mittels Handy-Simulation

4

16.02.2023 Implementation Bluetooth-Verbindung 6

18.02.2023 Dokumentation 5

27.02.2023 Dokumentation 4

23.02.2023 Bugfixing (Client) 4

06.03.2023 Dokumentation + Bugfixing (Bridge) 4

13.03.2023 Dokumentation 4

20.03.2023 Dokumentation 4

27.03.2023 Dokumentation 4

28.03.2023 Dokumentation 5

29.03.2023 Dokumentation 3.4

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

113

15 ANHANG

15.1 Schalter V1

15.1.1 Schaltplan

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

114

15.1.2 Layout

15.1.3 Stückliste

Bauteil Bauteilbezeichnung Anzahl

Testpins 2 polig 3

JTAG-SS 10 polig 1

Relais V231127 2

Transistor BSS123 2

LED QBLP650-S2 4

Diode (Draht) 1N4148W 2

Temperatur
Sensor TMP126 1

ESP-Devkit
ESP32-S3-Wroom-
1B 1

Kondensator C-1206 2

Kondensator C-0805 5

Widerstände R0805 8

Bauteil Bauteilbezeichnung Anzahl

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

115

15.2 Schalter V2

15.2.1 Schaltplan

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

116

15.2.2 Layout

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

117

15.2.3 Stückliste

Bauteil Bauteilbezeichnung Anzahl

Sicherung NBK240818-JP1021B 1

Schraubklemme RS Stock 494-8962 1

Taster PHAP3361 1

Solid-State SPF240D25 1

Netzteil AC-05-3 1

FET BSS123 1

LED QBLP650-S2 1

Diode 1N4148W 1

Temperatur Sensor TMP126 1

Linearregler SGM2212 1

USB-SS USB3080 1

Bi-Diode PESD5V0S1B 3

ESP ESP32-S3-Wroom-1B 1

Kondensator C-0805 100nF 6

Kondensator C-0805 10uF 3

Kondensator C-0805 2,2uF 1

Widerstände R0805 10kOhm 5

Widerstand R0805 1kOhm 2

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

118

15.2.4 USB-Schnittstelle

Etwas genauer gesagt handelt es sich um eine USB 2.0 Mini-A. Die „Universal Serial Bus“

Schnittstelle im (Volksmund Mikro-Usb) wird noch sehr oft eingesetzt, obwohl die Version 3.0

(Volksmund Usb-C) mit einer weitaus ausgereiften Kommunikation viele Vorteile bringt.

Es ist ein Anschluss mit 5 Pins. Die Pinbelegung lautet wie folgt: 71

Pin Name Beschreibung Adern Farbe

1 VBUS 5 Volt Rot

2 D- Datenleitungen Weiß

3 D+ Datenleitungen Grün

4 ID Identifikation kein Kabel

5 GND Masse Schwarz

Die Datenleitungen können mit bis zu 480 Mbit/s kommunizieren, da der ESP dies auch

beherrscht kann er auch mit voller Datenrate beschrieben und ausgelesen werden.

71 USB: Pinbelegung von USB A, B, C und Micro-USB (2022).

Abbildung 58: USB Pinbelegung

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

119

15.3 Bridge

15.3.1 Programmiersprache

 C C++ Javascript Java Pyton

Objektorientierung Nein Möglich Möglich Ja Möglich

Meiste Verwendung Hardware Hardware Web Allzweck Allzweck

Geschwindigkeit Schnell Schnell Langsam Moderat Langsam

Schwierigkeitsgrad Schwierig Schwierig Moderat Einfach Einfach

Typ Kompiliert Kompiliert Interpretiert Kompiliert Interpretiert

Interpretiert vs. Kompiliert

Interpretierte und kompilierte Sprachen unterscheiden sich in ihrer Art der Ausführung.

Kompilierte Sprachen werden in Maschinensprache übersetzt, bevor diese ausgeführt werden.

Dieser Prozess wird auch als „Kompilieren“ bezeichnet. Diese Programmiersprachen sind

dadurch oft sehr schnell.72

Interpretierte Sprachen werden direkt ausgeführt, ohne dass diese zuerst übersetzt werden.

Stattdessen wird das Programm Zeile für Zeile ausgeführt, während es gelesen (interpretiert)

wird. Diese Sprachen sind oft einfacher zu schreiben, was jedoch eine geringere

Geschwindigkeit zur Folge hat.73

72 Vgl. Difference between Compiled and Interpreted Language (2020).
73 Vgl. Compiler und Interpreter.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

120

Objektorientiert vs. Funktional

Diese zwei Kategorien unterscheiden sich in ihrem Ansatz zur Lösung von Einteilungen.

Objektorientierte Sprachen sind auf die Verwendung von „Objekten“ ausgerichtet, welche

einzelne Daten und Funktionen zusammenfassen. Dies sind Instanzen von „Klassen“, welche

bestimmte Funktionalitäten definieren. Sprachen, welche Objektorientierung unterstützen,

beinhalten oft Konzepte wie Vererbung, Polymorphie und Kapselung.74

Funktionale Sprachen sind auf die Verwendung von Funktionen ausgerichtet. Dies sind

unabhängige Elemente, welche bestimmte Abläufe ausführen. Diese Programmiersprachen

legen den Fokus auf die Verarbeitung der Daten anstatt auf die Veränderung.75

Zusammenfassend lässt sich sagen, dass objektorientierte Sprachen eine bessere

Wiederverwendbarkeit von Codes zur Folge haben, während funktionale eine einfachere

Modellierung von Prozessen und ein besseres Arbeiten mit parallelem Code ermöglichen76

Vergleich

Sowohl C als auch C++ sind kompilierte Sprachen, welche oft für die Programmierung von

Systemen verwendet wird, welche sich auf einer niedrigen Ebene befinden. Dabei sind diese

zwei Sprachen zwar sehr leistungsstark, jedoch auch sehr komplex und fordern ein gewisses

Maß an Fähigkeiten und Erfahrung.7778

74 Vgl. Objektorientiertes Programmieren I - einfach erklärt!
75 Vgl. Funktionale Programmierung: Erklärung & Beispiel (2020).
76 Vgl. Objektorientierte, Prozedurale und Funktionale Programmierung.
77 Vgl. Übersicht über die Programmiersprachen (2022) (2021).
78 Vgl. W3Schools C++.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

121

JavaScript (JS) ist eine interpretierte Skriptsprache, welche oft für Webanwendungen

verwendet wird. Dabei ist diese einfacher zu erlernen als die oben genannten zwei Sprachen,

jedoch auch leistungsärmer.79

Python ist wie JS eine interpretierte Hochlevel-Skriptsprache, auch einfach zu verwenden ist.

Dabei verfügt diese über eine Vielzahl von Tools und Bibliotheken.80

Java ist eine objektorientierte Sprache, welche meist für die Entwicklung von Enterprise- und

Android- Anwendungen verwendet wird. Ein Nachteil der Sprache ist ihre hohe

Resourcenanforderung.

15.3.2 Installation der benötigten Komponenten

Für die Erstellung der Applikation werden mehrere einzelne Software-Komponenten benötigt.

Dabei handelt es sich um systemabhängige „Dependencies „und Bibliotheken. In diesem

Kapitel werden die Komponenten nur installiert, der Umgang und die Erklärung sind in den

entsprechenden Kapitel zu finden.

Dependencies

Unter Dependencies werden Abhängigkeiten zwischen verschiedenen Software-

Komponenten in einem Unix bzw. Linux-System verstanden. Wenn eine Anwendung

ausgeführt werden soll, kann es sein, dass diese auf andere Elemente angewiesen ist, welche

als Abhängigkeiten bezeichnet werden.81

Raspbian verwendet ein sogenanntes Paketverwaltungssystem. Dies ermöglicht es neben der

Installation von Paketen, die Dependencies automatisch zu verwalten. Hier speziell wird das

System „Advanced Package Tool“ (APT) verwendet.82

Mittels APT kann ein Programm in der Konsole ganz einfach installiert werden, indem man

den Befehl sudo apt-get install <Packet-Name> verwendet:

Bibliotheken

Unter einer Bibliothek versteht man eine Ansammlung von Programmcode, welcher für einen

bestimmten Zweck geschrieben wurde und von Entwicklern verwendet werden kann, um ihre

eigene Software zu erstellen. Diese enthält normalerweise Funktionen, Klassen und andere

Code-Elemente, die häufig verwendet werden, um Zeit und Aufwand zu ersparen. Die meisten

79 Vgl. W3Schools Javascript.
80 Vgl. Welcome to Python.org.
81 Vgl. InstallingSoftware - Community Help Wiki.
82 Vgl. apt › apt › Wiki › ubuntuusers.de.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

122

Programmiersprachen enthalten bereits eine Standardbibliothek, welche diverse

Grundfunktionen enthält.

Für die Programmiersprache Python wird auch ein Package-Manager namens „Pip Installs

Packages“ (PIP) verwendet. Um hierbei ein Paket zu installieren, wird der Befehl pip install

<Packet-Name> verwendet:83

Achtung: Je nach Version kann dieser Befehl variieren (Ex. V3 -> „pip3“)

Vereinfachung

Für eine vereinfachte Installation wird ein „Bash“-Skript geschrieben, welches bei der

Ausführung alle verwendeten Komponenten installiert.

Ein Bash-Skript ist eine Textdatei, welches einzelne Unix- bzw. Linux-Befehle enthält. Es kann

dabei verwendet werden, um Aufgaben automatisch auszuführen, anstatt diese manuell

einzugeben.84

Das verwendete Bash-Skript sieht dabei wie folgend aus:

15.3.3 Entwicklungsumgebung

15.3.3.1 Verwendete Tools

Eine Entwicklungsumgebung (auch IDE genannt, ist eine integrierte Anwendung, welche

Entwickler bei der Erstellung, Verwaltung und Debugging von Programmen unterstützt. Für die

Bridge wird dabei der Compiler und den Text-Editor Visual Studio Code benötigt.

Visual Studio Code

VSCode ist eine plattformübergreifende und Open-Source IDE von Microsoft. Hiermit ist es

möglich, mit einer großen Auswahl an Programmiersprachen zu arbeiten, darunter auch

Python. Diese IDE bietet eine benutzerfreundliche grafische Oberfläche. Um die Funktionen

83 Vgl. ThePip.
84 Vgl. Bash-Skripting-Guide für Anfänger › Shell › Wiki › ubuntuusers.de.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

123

der IDE zu erweitern, werden sogenannte Plugins installiert, welche aus dem „Store“

entnommen werden können.85

Dieses Programm wird auf dem anderen Rechner installiert, wobei „remote“ auf die Bridge

zugegriffen wird, um auf ihr zu entwickeln. Hierbei wird SSH verwendet.

SSH

Secure Shell (SSH) ist ein Netzwerkprotokoll, welches eine sichere Kommunikation zwischen

zwei Geräten ermöglicht. Hierbei wird es verwendet, um von einem Rechner auf die Bridge

zuzugreifen. Zur Sicherung der Verbindung kommen Authentifizierungen, als auch

Verschlüsselung zum Einsatz. 86

Zur Verschlüsselung dient ein Verfahren namens „Public/Private Key“. Dies ist ein spezielles

Kryptographie-System, welches einen öffentlichen und einen privaten Schlüssel verwendet,

welche jeder Teilnehmer individuell erhält. Der öffentliche Key wird frei verteilt und dient zur

Verschlüsselung der Nachrichten. Der private Schlüssel wird hingegen geheim gehalten und

wird für die Entschlüsselung der Nachricht verwendet. Wenn nun ein Gerät einem Anderen

eine Nachricht senden will, holt dieser den öffentlichen Schlüssel des Empfängers und

verschlüsselt die Nachricht. Nach Empfang der Nachricht beim anderen Gerät, wird die

Nachricht nun mit dem privaten Schlüssel lesbar gemacht87.88

85 Vgl. Visual Studio Code - Code Editing. Redefined.
86 Vgl. Lonvick, C. M./Ylonen, T. (2006); Aleksic, M. (2021).
87 Vgl. Kryptographie - einfach erklärt (2018).
88 Vgl. „Public Key“ oder „Private Key“: Unterschiede der Verfahren zur Daten-

Verschlüsselung - PSW GROUP Blog.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

124

Um sich zu authentifizieren, wird nun ein Passwort verwendet, welches zuerst auf der Bridge

festgelegt wird.

GIT

Git ist ein freies und quelloffenes Versionskontrollsystem, das es Entwicklern ermöglicht, ihren

Code und andere Dateien zu verwalten und zu verfolgen. Somit ist es möglich eine

Entwicklung sehr einfach parallel auszuführen. Es ist auch jederzeit möglich, eine vorherige

Version des Projekts wiederherzustellen.

Dieses Tool ist eines der meist verwendeten Systeme dieser Art und ist auch für seine

Geschwindigkeit und Flexibilität bekannt.89

Alle Daten des Projektes werden bei Git in einem sogenannten „Repository“ abgespeichert.

Dieses sollte jederzeit erreichbar sein, weshalb ein externer Service namens „GitHub“

verwendet wird, welcher diesen Dienst anbietet.90

Änderungen an dem Projekt können mittels „Commits“ erstellt werden. Diese speichern

Datensätze an Änderungen und eine Nachricht, welches diese beschreibt.

Die parallele Entwicklung wird mit Hilfe von Zweigen („Branches“) geregelt. Der Zweig, welcher

für die Produktion bereit ist, wird als „Main-“ oder „Masterbranch“ bezeichnet. Alle anderen

Branches „zweigen“ von diesem ab und werden für die Entwicklung von neuen Funktionen

verwendet.

Die erneute Zusammenführung der Branches mit einem anderem wird als „Merging“

bezeichnet.91

15.3.3.2 Einrichtung

Um die Entwicklung erst möglich zu machen, müssen die einzelnen Werkzeuge eingerichtet

werden.

Git/Github

Für die Nutzung von Git muss ein globaler Nutzername, sowohl als auch eine E-Mail-Adresse

angegeben werden. Hierbei werden die Daten von Git-Hub verwendet

89 Vgl. Atlassian.
90 Vgl. universal-smart-switch/uss-bridge.
91 Vgl. Git.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

125

Auch wird ein spezieller Schlüssel SSH-Schlüssel von Github verwendet, welche unter den

„SSH/GPG“-Einstellungen eingefügt werden kann. Diesem werden aus Sicherheitsgründen

jedoch nur die benötigten Berechtigungen erteilt. Zur Erstellung wird in der Kommandozeilge

der Befehl gh auth verwendet.

Abbildung 59: GitHub Key

VSCode

Um sich von einem Remote-Gerät mit der Bridge zu verbinden, wird der „Connect“-Button

(unten links) ausgewählt. Anschließend wird die IP-Adresse der Bridge eingegeben.

Abbildung 60: VSCode

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

126

15.3.4 Verwaltung der Einstellungen: Lösungswege

15.3.4.1 XML

Die „Extended Markup Language“ (auch XML genannt), ist eine flexible, textbasierte Markup-

Sprache, die für die Datenbeschreibung und -übertragung verwendet wird. Im Gegensatz zu

HTML, das für die Formatierung und Darstellung von Websites verwendet wird, ist XML eine

generische Markup-Sprache, die für eine Vielzahl von Anwendungen verwendet werden kann.

92

Ein XML-Dokument besteht aus den folgenden grundlegenden Teilen:

1. Prolog: Ein optionaler Teil, der Meta-Informationen wie die Verwendung von

Zeichencodierungen oder DTDs (Document Type Definitions) enthält.

2. Wurzelelement: Dieses beschreibt das Dokument selbst und enthält alle

untergeordneten Elemente.

3. Elemente: Die Hauptbausteine von XML, die Daten beschreiben. Elemente bestehen

aus einem Namen, einem Inhalt und ggf. Attributen.

4. Attribute: Zusätzliche Informationen, die einem Element hinzugefügt werden, um

weitere Einzelheiten über das Element bereitzustellen.

5. Inhalt: Der tatsächliche Inhalt des Elements, der aus Text, weiteren Elementen oder

beidem bestehen kann.93

Ein XML-Dokument sollte auch eine gültige Struktur haben, bei der sich jedes Element schließt

und jedes Element eindeutig definiert ist.94

Beispiel:

92 Vgl. XML Tutorial.
93 Vgl. XML Syntax.
94 Vgl. Extensible Markup Language (XML) 1.0 (2006).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

127

In diesem Beispiel enthält das Wurzelelement "bookstore" zwei untergeordnete Elemente

"book". Jedes "book"-Element enthält weitere Elemente "title", "author" und "year" mit

Attributen "published".

15.3.4.2 JSON

Die „JavaScript Object Notation“ (JSON) ist wie XML ein offenes Datenformat, das

hauptsächlich zur Übertragung und Speicherung von Daten verwendet wird. Es wurde aus

JavaScript abgeleitet und ist ein einfaches, menschenlesbares Datenformat, das jedoch eine

sehr klare und strukturierte Syntax hat.

Ein JSON-Dokument besteht aus Key-Value-Paaren, die mithilfe von geschweiften Klammern

{} gruppiert werden. Jeder Key ist ein String, während der zugehörige Value ein anderes

JSON-Objekt, ein Array, ein Boolean, eine Zahl oder ein String sein kann. 95

Beispiel:

Abgebildet ist das obige Beispiel, diesmal jedoch in JSON.

15.3.4.3 CSV

Die dritte Möglichkeit, Daten im Klartext abzuspeichern ist das CSV-Format („Coma-Seperated

Values“). In einer CSV-Datei werden die Daten in Zeilen organisiert, wobei jede Zeile einen

Datensatz darstellt. Die Felder innerhalb eines Datensatzes werden durch Kommas

voneinander getrennt96.

Beispiel:

95 Vgl. JSON Introduction.
96 Vgl. Hoffman, C. (2022).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

128

15.3.4.4 YAML

Dieses Format unterscheidet sich von XML und JSON darin, dass diese sehr einfach zu lesen

und zu schreiben ist.97

In YAML werden Daten durch Einrückungen organisiert, um die Hierarchie von Daten zu

zeigen. Schlüssel-Wert-Paare werden durch Doppeltpunkte getrennt. Einfache Datentypen

wie Zahlen und Strings können direkt ausgezeichnet werden, während komplexere

Datenstrukturen wie Listen und „dictionaries“ verwendet werden können, um mehrere Werte

zu speichern.98

Beispiel:

15.4 Client

15.4.1 Programmiersprache

Wie auch schon für die Bridge-Applikation muss eine Programmiersprache für die Client-

Software ausgewählt werden. Die einzelnen Arten und Unterteilungen dieser Sprachen sind

im gleichnamigen Kapitel der Bridge zu finden. Die Client-Applikation soll mindestens auf

Windows 10 ausführbar sein und zugleich auch einfach zu erstellen. Die Beschreibungen der

Sprachen werden im gleichnamigen Kapitel der Bridge genauer erklärt.

 C# C++ VB Python

Objektorientierung Ja Möglich Ja Ja

Meiste Verwendung Desktop Hardware Desktop Allzweck

Geschwindigkeit Moderat Schnell Moderat Langsam

Schwierigkeitsgrad Einfach Schwierig Einfach Einfach

Typ Kompiliert Kompiliert Kompiliert Interpretiert

97 Vgl. The Official YAML Web Site.
98 Vgl. Velimirovic, A. (2020).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

129

Vergleich

C# ist eine moderne, einfach zu erlernende Sprache, die in die .NET-Plattform integriert ist.

Es bietet eine reiche Bibliothek an Tools und Bibliotheken, einschließlich einer modernen

grafischen Benutzeroberfläche99.100

C++ ist eine leistungsstarke Sprache, die für anspruchsvolle Anwendungen geeignet ist,

einschließlich Desktop-Anwendungen. Es hat jedoch eine steile Lernkurve und eine

syntaktisch komplexere Sprache als C# oder Python.101

VB ist eine einfach zu erlernende Sprache, die auf der .NET-Plattform basiert. Es ist eine gute

Wahl für die Entwicklung von einfachen Desktop-Anwendungen mit einer einfachen grafischen

Benutzeroberfläche.102

Python ist eine einfach zu erlernende, aber mächtige Sprache, die oft für die Erstellung von

Skripten und kleinen Anwendungen verwendet wird. Es gibt auch spezielle Bibliotheken wie

PyQt, die es ermöglichen, Desktop-Anwendungen mit einer einfachen und intuitiven

Schnittstelle zu erstellen.103

Schlussendlich fällt die Entscheidung auf die Sprache C#, da diese neben den genannten

Vorteilen auch von den Team-Mitgliedern bis zu einem gewissen Grad beherrscht wird.

15.4.2 Plattform

Eine Entwicklungs-Plattform ist eine umfassende Sammlung von Tools, Technologien und

Bibliotheken, die Entwicklern dabei hilft, Anwendungen für eine bestimmte Plattform oder

Gerätefamilie zu erstellen. Sie bietet normalerweise eine integrierte Umgebung, in der

Entwickler ihre Anwendungen schreiben, debuggen, testen und bereitstellen können.

Eine gute Plattform sollte einfach zu verwenden sein, über eine breite Palette von Funktionen

und Bibliotheken verfügen, die Entwicklern helfen, ihre Anwendungen zu erstellen, und eine

starke Community haben, die bei Fragen und Problemen unterstützt.104

C# ist hierbei in die .NET-Plattform von Microsoft integriert. Neben diesen Sprachen unterstützt

diese auch eine Vielzahl von Programmiersprachen, darunter auch die besprochene VB. Ein

großer Vorteil dieser Plattform ist es, dass sie sehr viele Bibliotheken für die Entwicklung

bereitstellt.105

99 Vgl. What is .NET? An Overview of the Platform.
100 Vgl. BillWagner.
101 Vgl. BillWagner; ISO.
102 Vgl. dotnet-bot.
103 Vgl. Welcome to Python.org; Qt | Cross-platform Software Design and Development Tools.
104 Vgl. CONET.
105 Vgl. .NET Framework: Was ist das, wer braucht das? | NETZWELT.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

130

15.4.2.1 Funktionsweise

.NET funktioniert durch die Verwendung einer Common Language Runtime (CLR), der als

Herzstück des .NET-Frameworks bezeichnet wird. Diese CLR ist dabei für die sichere

Ausführung von Anwendungen verantwortlich. Dabei verwaltet diese die Ressourcen, Threads

und Speicher, welche von einer Anwendung verwendet werden.106

Wenn eine .NET-Anwendung ausgeführt wird, wird der Code von einem Compiler in die

Microsoft Intermediate Language (MSIL) übersetzt, die auch als CIL (Common Intermediate

Language) bezeichnet wird. Dies ist eine maschinenunabhängige Sprache, die von jedem

Computer verarbeitet werden kann. MSIL-Code wird erst zur Ausführungszeit in

maschinenabhängigen Code übersetzt, der auf dem Zielcomputer ausgeführt werden kann.

Dies ermöglicht es, dass die Anwendungen auf einer Vielzahl von Plattformen ausgeführt

werden können, ohne dass sie für jede Plattform neu kompiliert werden müssen.107

108

Abbildung 61: .NET Layers

106 Vgl. .NET | Free. Cross-platform. Open Source.
107 Vgl. CIL or MSIL | Microsoft Intermediate Language or Common Intermediate Language

(2019).
108 Abbildung: Strahl, C. M., EPS Software Corp ,. Rick.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

131

15.4.2.2 App-Modelle

Um eine Anwendung mittels .NET zu entwickeln, bedarf es jedoch noch an einem App-Model.

Diese befinden über den oben genannten Schichten und sind verschiedene

Implementierungen von .NET. Sie sind auch in der obigen Abbildung zu sehen.

Vergleich

Das .NET-Framework ist die ursprüngliche Implementierung des .NET-Ökosystems und wurde

für den Einsatz auf Windows-Systemen entwickelt.109

.NET Core ist eine moderne, offene und modular aufgebaute Implementierung des .NET-

Ökosystems, die für den Einsatz auf einer Vielzahl von Plattformen, einschließlich Windows,

Linux und MacOS, entwickelt wurde. .NET Core unterstützt eine kleinere Auswahl an

Programmiersprachen als das .NET-Framework, aber es ist schneller, leichter und

skalierbarer.

Xamarin ist ebenso Implementierung des .NET-Systems, die speziell für die Entwicklung

mobiler Anwendungen für iOS, Android und Windows entwickelt wurde. Es ermöglicht

Entwicklern, Anwendungen in C# zu schreiben und diese auf mehreren Plattformen zu

veröffentlichen, wodurch die Zeit und Kosten für die Entwicklung mobiler Anwendungen

erheblich reduziert werden.110111

Fazit

Durch die mögliche Unterstützung mehrerer Plattformen fällt der erste Entschluss auf Xamarin.

Jedoch wird die Implementierung im Verlauf des Projektes aufgrund von Problemen

gewechselt, welche im entsprechenden Kapitel zu finden sind.

15.4.3 Installation der benötigten Komponenten

Die Entwicklung des Clients erfordert die Installation von mehreren wichtigen Komponenten,

wie beispielsweise die Plattform oder die IDE.

.NET

Die Plattform kann von der offiziellen Website heruntergeladen und installiert werden. Wichtig

dabei ist, dass die Prozessor-Architektur x86 ausgewählt wird. Diese beschreibt die

grundlegenden technischen Merkmale und Funktionen eines Computerprozessors, welcher

einer der wichtigsten Komponenten eines Computers darstellt und verantwortlich für die

Ausführung von Anweisungen aus Programmen und der Verarbeitung von Daten ist.

Visual Studio

109 Vgl. Was ist .NET Framework? – einfach erklärt (2022).
110 Vgl. Was ist Xamarin? - Xamarin | Microsoft Learn.
111 Vgl. Plattformübergreifende mobile App-Entwicklung mit Xamarin (2019).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

132

Visual Studio ist eine IDE von Microsoft, die für die Entwicklung von Anwendungen auf

verschiedenen Plattformen wie Windows, MacOS und Linux verwendet wird. Es unterstützt

neben C# auch eine Vielzahl von Programmiersprachen, darunter C++, Visual Basic, Python,

F# und viele andere.

Mithilfe dieser Umgebung können Entwickler ihre Projekte schnell und einfach organisieren,

indem sie Code schreiben, Fehler beheben, Tests ausführen und Anwendungen bereitstellen.

Es bietet auch viele Tools, um die Entwicklung zu beschleunigen, einschließlich einer visuellen

Oberfläche für die Entwicklung von Benutzeroberflächen, Debugging-Tools, einer

Codebibliothek und vielem mehr.

Wie auch .NET kann diese von der offiziellen Website installiert werden. Wichtig bei dieser ist

jedoch, dass die benötigten Komponenten ausgewählt werden. Unter dem Reiter „Workloads“

können diese selektiert werden.112

Abbildung 62: Visual-Studio Installer

GitHub-Destkop

Wie auch bei der Bridge wird zur Versionsverwaltung das Werkzeug git verwendet. Für

Windows gibt es dabei eine nützliche Software von Github, welche diese Arbeitsweise deutlich

erleichtert.

112 Vgl. Visual Studio: IDE and Code Editor for Software Developers and Teams.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

133

Die Anwendung unterstützt auch die Verwaltung von Zweigen, die Überwachung von

Konflikten bei der Zusammenarbeit an Projekten und die Integration mit anderen Tools wie

Visual Studio Code.113

Innerhalb der Anwendung kann das Repository der Clients per Button gecloned werden.

Abbildung 63: GitHub-Desktop

113 Vgl. GitHub Desktop.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

134

15.5 Kommunikation

15.5.1 Aufteilung des OSI-Modells

Das OSI-Modell ist in 7 aufeinanderfolgende Schichten gegliedert, welche jeweils einen eng

definierten Aufgabenbereich zugeteilt sind.114

115

Abbildung 64: OSI-Modell

Schicht 1: Bitübertragungsschicht

Dieses Abteil stellt eine elektrische oder mechanische Schnittstelle zum Medium der

Übertragung dar. Die Protokolle auf dieser Schicht unterscheiden sich lediglich durch die Art

des Mediums selbst116117

Schicht 2: Sicherungsschicht

Diese Schicht (auch Data Link Layer genannt) ist zuständig für eine zuverlässige und

funktionierende Verbindung zwischen dem Übertragungsmedium und dem Endgerät. Zudem

enthält dieses Abteil auch Methoden zur Fehlerbehebung und zur Datenflusskontrolle. 118

Schicht 3: Vermittlungsschicht

Die Vermittlungsschicht ist verantwortlich, für die logisch und zeitlich getrennte Kommunikation

zwischen den Teilnehmern. Dies ist das erste Abteil, auf welchem eine logische Adressierung

der Geräte erfolgt.119

114 Vgl. OSI Model Reference Chart.
115 Abbildung: OSI-Schichtenmodell.
116 Vgl. OSI-Schichtenmodell.
117 Vgl. Physical Layer.
118 Vgl. Data Link Layer.
119 Vgl. Network Layer.

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

135

Schicht 4: Transportschicht

Hierbei werden die einzelnen Pakete einer Anwendung zugeteilt. Diese Schicht dient somit als

Übersetzer zwischen den anwendungs- und transportorientierten Schichten.120

Schicht 5: Kommunikationsschicht

 Dieses Fach organisiert die Verbindung zwischen den Systemen mittels Kontroll- und

Steuerungsmechanismen.

Schicht 6: Darstellungsschicht

Dieses Abteil stellt die Daten in unterschiedlichen Formaten dar, welche vom Nutzer

verstanden werden können.

Schicht 7: Anwendungsschicht

Diese Ebene stellt die Daten endgültig für den Anwender dar. Auf der Anwendungsschicht

findet auch die Datenein- und Ausgabe statt.121

15.5.1.1 Speziell: Transmission Control Protocol

Das Transmission Control Protocol (TCP) ist ein zustandsorientiertes Netzwerkprotokoll, das

für die Übertragung von Daten in Computernetzen verwendet wird. 122

TCP arbeitet auf der Transportschicht des OSI-Modells und ist für die Übertragung von

Datenströmen verantwortlich. Es sorgt dabei für eine Verbindungsaufnahme, Übertragung und

Beendigung von Datenströmen, Überprüfung auf Fehler und dessen Korrektur.123124

Der entscheidende Vorteil von TCP ist, dass Daten, die von einer Anwendung gesendet

werden, vollständig und in der korrekten Reihenfolge beim Empfänger ankommen. Es ist ein

zuverlässiges Protokoll und eignet sich daher für die Übertragung von wichtigen Daten, bei

denen eine zuverlässige Übertragung erforderlich ist, wie beispielsweise für Webseiten, E-Mail

oder Dateiübertragungen.125

120 Vgl. Transport Layer.
121 Vgl. Application Layer.
122 Vgl. Was ist TCP (Transmission Control Protocol)? - Definition von WhatIs.com.
123 Vgl. TCP - Transmission Control Protocol.
124 Vgl. Protocol Suites (TCP/IP).
125 Vgl. TCP (Transmission Control Protocol) – das Transportprotokoll im Porträt (2020).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

136

16 QUELLENVERZEICHNIS

Adam, B. (2020): Die fünf Sicherheitsregeln der Elektrotechnik, WEKA Media - Der
Fachverlag für Ihren beruflichen Erfolg, in: https://www.weka.de/elektrosicherheit/die-fuenf-
sicherheitsregeln-der-elektrotechnik/ (Zugriff am 29.3.2023).

Afaneh, M. (2020): How Bluetooth Low Energy Works: Advertisements (Part 1), Novel Bits,
in: https://novelbits.io/bluetooth-low-energy-advertisements-part-1/ (Zugriff am 15.3.2023).

Aleksic, M. (2021): What Is SSH (Secure Shell) And How Does It Work?, Knowledge Base
by phoenixNAP, in: https://phoenixnap.com/kb/what-is-ssh (Zugriff am 9.2.2023).

Asana: Projektmanagement-Methoden im Überblick: 13 Modelle im Vergleich • Asana,
Asana, in: https://asana.com/de/resources/project-management-methodologies (Zugriff am
13.3.2023).

Atlassian: Was ist Git? | Atlassian Git Tutorial, Atlassian, in:
https://www.atlassian.com/de/git/tutorials/what-is-git (Zugriff am 9.2.2023).

Atrox (2023): HaikunatorPY, .

Augsten, S. (2022): Was bedeutet MVVM?, in: https://www.dev-insider.de/was-bedeutet-
mvvm-a-1103448/ (Zugriff am 16.2.2023).

bijington (2022): .NET MAUI Community Toolkit documentation - .NET Community Toolkit,
in: https://learn.microsoft.com/en-us/dotnet/communitytoolkit/maui/ (Zugriff am 16.2.2023).

BillWagner: C#-Dokumentation: Einstieg, Tutorials, Referenz., in:
https://learn.microsoft.com/de-de/dotnet/csharp/ (Zugriff am 11.2.2023).

BillWagner (2023a): try-catch - C# Reference, in: https://learn.microsoft.com/en-
us/dotnet/csharp/language-reference/keywords/try-catch (Zugriff am 16.2.2023).

BillWagner (2023b): if- und switch-Anweisungen: Wählen Sie den Ausführungspfad
zwischen Denkverzweigungen aus., in: https://learn.microsoft.com/de-
de/dotnet/csharp/language-reference/statements/selection-statements (Zugriff am
17.2.2023).

CONET: Microsoft .NET, CONET | IT-Systemhaus & IT-Beratung, in:
https://www.conet.de/DE/loesungen/microsoft/microsoft-net (Zugriff am 11.2.2023).

davidbritch (2023a): Was ist .NET MAUI? - .NET MAUI, in: https://learn.microsoft.com/de-
de/dotnet/maui/what-is-maui (Zugriff am 16.2.2023).

davidbritch (2023b): What is .NET MAUI? - .NET MAUI, in: https://learn.microsoft.com/en-
us/dotnet/maui/what-is-maui (Zugriff am 17.2.2023).

dotnet-bot: Visual Basic docs - get started, tutorials, reference., in:
https://learn.microsoft.com/en-us/dotnet/visual-basic/ (Zugriff am 11.2.2023a).

dotnet-bot: Task Class (System.Threading.Tasks), in: https://learn.microsoft.com/en-
us/dotnet/api/system.threading.tasks.task?view=net-7.0 (Zugriff am 16.2.2023b).

Ewald, W. (2020): Spannungsversorgung - Linear- und Schaltregler • Wolles Elektronikkiste,
Wolles Elektronikkiste, in: https://wolles-elektronikkiste.de/spannungsversorgung-linear-und-
schaltregler (Zugriff am 18.3.2023).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

137

Feli (2021): Lichtschalter und Steckdosen: Höhe und Maße, Talu.de, in:
https://www.talu.de/lichtschalter-und-steckdosen/ (Zugriff am 19.3.2023).

Glaser, O. (2012): Answer to „Why does micro USB 2.0 have 5 pins, when the A-type only
has 4?“, Electrical Engineering Stack Exchange, in:
https://electronics.stackexchange.com/a/35468 (Zugriff am 19.3.2023).

Helmut (2021): Die ESP32-Evolution: S2, S3, C3, Arduino-Hannover, in: https://arduino-
hannover.de/2021/12/09/die-esp32-evolution-s2-s3-c3/ (Zugriff am 18.3.2023).

Hoffman, C. (2022): What Is a CSV File, and How Do I Open It?, How-To Geek, in:
https://www.howtogeek.com/348960/what-is-a-csv-file-and-how-do-i-open-it/ (Zugriff am
9.2.2023).

ISO: ISO/IEC 14882:2020, ISO, in: https://www.iso.org/standard/79358.html (Zugriff am
11.2.2023).

jwmsft (2022): Übersicht über XAML - UWP applications, in: https://learn.microsoft.com/de-
de/windows/uwp/xaml-platform/xaml-overview (Zugriff am 22.2.2023).

Lonvick, C. M./Ylonen, T. (2006): The Secure Shell (SSH) Protocol Architecture, .

Ltd, R. P.: Buy a Raspberry Pi Zero, Raspberry Pi, in:
https://www.raspberrypi.com/products/raspberry-pi-zero/ (Zugriff am 9.2.2023a).

Ltd, R. P.: Buy a Raspberry Pi 4 Model B, Raspberry Pi, in:
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ (Zugriff am 9.2.2023b).

Ltd Raspberry-Pi: Raspberry Pi OS, Raspberry Pi, in:
https://www.raspberrypi.com/software/ (Zugriff am 9.2.2023).

michaelstonis (2022): Model-View-ViewModel, in: https://learn.microsoft.com/en-
us/dotnet/architecture/maui/mvvm (Zugriff am 16.2.2023).

moicapnhap: Was ist der unterschied von c++ und arduino ide, moicapnhap, in:
https://de.moicapnhap.com/post/was-ist-der-unterschied-von-c-und-arduino-ide (Zugriff am
19.3.2023).

O.V. (2006): Extensible Markup Language (XML) 1.0, in:
https://web.archive.org/web/20060615212726/http://www.w3.org/TR/1998/REC-xml-
19980210 (Zugriff am 9.2.2023).

O.V. (2017): Intro zu Bluetooth Stromverbrauch | Bluetooth® Technologie Website, Website
zur Bluetooth®-Technologie, in: https://www.bluetooth.com/de/bluetooth-resources/intro-to-
bluetooth-power-consumption/ (Zugriff am 29.3.2023).

O.V. (2018): Kryptographie - einfach erklärt, in: https://praxistipps.chip.de/kryptographie-
einfach-erklaert_102083 (Zugriff am 22.2.2023).

O.V. (2019): CIL or MSIL | Microsoft Intermediate Language or Common Intermediate
Language, GeeksforGeeks, in: https://www.geeksforgeeks.org/cil-or-msil-microsoft-
intermediate-language-or-common-intermediate-language/ (Zugriff am 11.2.2023).

O.V. (2019): Lesson 2 – BLE profiles, services, characteristics, device roles and network
topology, Embedded Centric, in: https://embeddedcentric.com/lesson-2-ble-profiles-services-
characteristics-device-roles-and-network-topology/ (Zugriff am 15.3.2023).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

138

O.V. (2019): Plattformübergreifende mobile App-Entwicklung mit Xamarin, Marsner
Technologies, in: https://marsner.com/de/blog/plattformubergreifende-mobile-app-
entwicklung-mit-xamarin/ (Zugriff am 22.2.2023).

O.V. (2020): Funktionale Programmierung: Erklärung & Beispiel, IONOS Digital Guide, in:
https://www.ionos.de/digitalguide/websites/web-entwicklung/funktionale-programmierung/
(Zugriff am 9.2.2023).

O.V. (2020): Difference between Compiled and Interpreted Language, GeeksforGeeks, in:
https://www.geeksforgeeks.org/difference-between-compiled-and-interpreted-language/
(Zugriff am 9.2.2023).

O.V. (2020): TCP (Transmission Control Protocol) – das Transportprotokoll im Porträt,
IONOS Digital Guide, in: https://www.ionos.de/digitalguide/server/knowhow/tcp-vorgestellt/
(Zugriff am 9.2.2023).

O.V. (2020): Design Patterns – schneller und sicherer programmieren, IONOS Digital Guide,
in: https://www.ionos.de/digitalguide/websites/web-entwicklung/was-sind-design-patterns/
(Zugriff am 16.2.2023).

O.V. (2020): Factory Pattern: Alle Informationen zum Factory Method Pattern, IONOS Digital
Guide, in: https://www.ionos.de/digitalguide/websites/web-entwicklung/was-ist-das-factory-
pattern/ (Zugriff am 16.2.2023).

O.V. (2021): Was ist eine statische Funktion in C? | Referenz, in: https://juttadolle.com/was-
ist-eine-statische-funktion-in-c/ (Zugriff am 22.2.2023).

O.V. (2021): Übersicht über die Programmiersprachen (2022), in:
https://lerneprogrammieren.de/uebersicht-ueber-die-programmiersprachen/ (Zugriff am
9.2.2023).

O.V. (2021): The Model View Controller Pattern – MVC Architecture and Frameworks
Explained, freeCodeCamp.org, in: https://www.freecodecamp.org/news/the-model-view-
controller-pattern-mvc-architecture-and-frameworks-explained/ (Zugriff am 16.2.2023).

O.V. (2021): Eine Einführung in Mini-USB: Definition, Funktionen und Verwendung, MiniTool,
in: https://de.minitool.com/bib/mini-usb.html (Zugriff am 18.3.2023).

O.V. (2022): Was ist .NET Framework? – einfach erklärt, GIGA, in:
https://www.giga.de/downloads/windows-10/specials/was-ist-net-framework-einfach-erklaert/
(Zugriff am 11.2.2023).

O.V. (2022): USB: Pinbelegung von USB A, B, C und Micro-USB, GIGA, in:
https://www.giga.de/tipp/usb-pinbelegung-a-b-c-micro/ (Zugriff am 19.3.2023).

O.V.: Das GNU-System und Linux - GNU-Projekt - Free Software Foundation, in:
https://www.gnu.org/gnu/linux-and-gnu.de.html (Zugriff am 9.2.2023).

O.V.: FrontPage - Raspbian, in: https://www.raspbian.org/ (Zugriff am 9.2.2023).

O.V.: Compiler und Interpreter, in: https://www.elektronik-
kompendium.de/sites/com/1705231.htm (Zugriff am 9.2.2023).

O.V.: Objektorientiertes Programmieren I - einfach erklärt!, Studyflix, in:
https://studyflix.de/informatik/objektorientiertes-programmieren-i-423 (Zugriff am 9.2.2023).

O.V.: W3Schools C++, in: https://www.w3schools.com/cpp/default.asp (Zugriff am 9.2.2023).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

139

O.V.: W3Schools Javascript, in: https://www.w3schools.com/js/DEFAULT.asp (Zugriff am
9.2.2023).

O.V.: Welcome to Python.org, in: https://www.python.org/ (Zugriff am 9.2.2023).

O.V.: InstallingSoftware - Community Help Wiki, in:
https://help.ubuntu.com/community/InstallingSoftware#Package_Dependencies (Zugriff am
9.2.2023).

O.V.: apt › apt › Wiki › ubuntuusers.de, in: https://wiki.ubuntuusers.de/apt/apt/ (Zugriff am
9.2.2023).

O.V.: Bash-Skripting-Guide für Anfänger › Shell › Wiki › ubuntuusers.de, in:
https://wiki.ubuntuusers.de/Shell/Bash-Skripting-Guide_f%C3%BCr_Anf%C3%A4nger/
(Zugriff am 9.2.2023).

O.V.: Visual Studio Code - Code Editing. Redefined, in: https://code.visualstudio.com/
(Zugriff am 9.2.2023).

O.V.: „Public Key“ oder „Private Key“: Unterschiede der Verfahren zur Daten-
Verschlüsselung - PSW GROUP Blog, in: https://www.psw-
group.de/blog/%E2%80%9Epublic-key%E2%80%9C-oder-%E2%80%9Eprivate-
key%E2%80%9C-unterschiede-der-verfahren-zur-daten-verschlusselung/591 (Zugriff am
9.2.2023).

O.V.: universal-smart-switch/uss-bridge, GitHub, in: https://github.com/universal-smart-
switch/uss-bridge (Zugriff am 9.2.2023).

O.V.: Git, in: https://git-scm.com/ (Zugriff am 9.2.2023).

O.V.: XML Tutorial, in: https://www.w3schools.com/xml/ (Zugriff am 9.2.2023).

O.V.: JSON Introduction, in: https://www.w3schools.com/js/js_json_intro.asp (Zugriff am
9.2.2023).

O.V.: The Official YAML Web Site, in: https://yaml.org/ (Zugriff am 9.2.2023).

O.V.: xml.etree.ElementTree — The ElementTree XML API, Python documentation, in:
https://docs.python.org/3/library/xml.etree.elementtree.html (Zugriff am 9.2.2023).

O.V.: OSI Model Reference Chart, in: https://learningnetwork.cisco.com/s/article/osi-model-
reference-chart (Zugriff am 9.2.2023).

O.V.: Physical Layer, in: https://contenthub.netacad.com/itn-dl/4.0.1 (Zugriff am 9.2.2023).

O.V.: Data Link Layer, in: https://contenthub.netacad.com/itn-dl/6.0.1 (Zugriff am 9.2.2023).

O.V.: Network Layer, in: https://contenthub.netacad.com/itn-dl/8.0.1 (Zugriff am 9.2.2023).

O.V.: Transport Layer, in: https://contenthub.netacad.com/itn-dl/14.0.1 (Zugriff am 9.2.2023).

O.V.: Application Layer, in: https://contenthub.netacad.com/itn-dl/15.0.1 (Zugriff am
9.2.2023).

O.V.: TCP - Transmission Control Protocol, in: https://www.elektronik-
kompendium.de/sites/net/0812271.htm (Zugriff am 9.2.2023).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

140

O.V.: Protocol Suites (TCP/IP), in: https://contenthub.netacad.com/itn-dl/3.3.3 (Zugriff am
9.2.2023).

O.V.: Objektorientierte, Prozedurale und Funktionale Programmierung, in: https://dev-
supp.de/programmierung/objektorientierte-programmierung-vs-prozedurale-programmierung-
vs-funktionale-programmierung (Zugriff am 10.2.2023).

O.V.: XML Syntax, in: https://www.w3schools.com/XML/xml_syntax.asp (Zugriff am
10.2.2023).

O.V.: Qt | Cross-platform Software Design and Development Tools, in: https://www.qt.io
(Zugriff am 11.2.2023).

O.V.: .NET Framework: Was ist das, wer braucht das? | NETZWELT, in:
https://www.netzwelt.de/news/153991-net-framework-braucht-.html (Zugriff am 11.2.2023).

O.V.: .NET | Free. Cross-platform. Open Source., Microsoft, in:
https://dotnet.microsoft.com/en-us/ (Zugriff am 11.2.2023).

O.V.: Was ist Xamarin? - Xamarin | Microsoft Learn, in: https://learn.microsoft.com/de-
de/xamarin/get-started/what-is-xamarin (Zugriff am 11.2.2023).

O.V.: Visual Studio: IDE and Code Editor for Software Developers and Teams, in:
https://visualstudio.microsoft.com/ (Zugriff am 11.2.2023).

O.V.: GitHub Desktop, GitHub Desktop, in: https://desktop.github.com/ (Zugriff am
11.2.2023).

O.V.: Singleton Design Pattern: Das Singleton-Entwurfsmuster kurz erklärt - IONOS, in:
https://www.ionos.de/digitalguide/websites/web-entwicklung/was-ist-das-singleton-pattern/
(Zugriff am 16.2.2023).

O.V.: Asynchronous programming - C# | Microsoft Learn, in: https://learn.microsoft.com/en-
us/dotnet/csharp/asynchronous-programming/async-scenarios (Zugriff am 16.2.2023).

O.V.: Windows Presentation Foundation | WPF und .NET, Visual Studio, in:
https://visualstudio.microsoft.com/de/vs/features/wpf/ (Zugriff am 16.2.2023).

O.V.: What is WPF? - The complete WPF tutorial, in: https://wpf-tutorial.com/about-wpf/what-
is-wpf/ (Zugriff am 16.2.2023).

O.V.: .NET MAUI: Paradiesische App-Entwicklung, in: https://entwickler.de/dotnet/dotnet-
maui-cross-plattform-framework (Zugriff am 17.2.2023).

O.V.: Working with App.xaml - The complete WPF tutorial, in: https://wpf-tutorial.com/wpf-
application/working-with-app-xaml/ (Zugriff am 17.2.2023).

O.V.: What is .NET? An Overview of the Platform, Auth0 - Blog, in:
https://auth0.com/blog/what-is-dotnet-platform-overview/ (Zugriff am 22.2.2023).

O.V.: Was ist .Net? – Erläuterung zu Dotnet – AWS, Amazon Web Services, Inc., in:
https://aws.amazon.com/de/what-is/net/ (Zugriff am 22.2.2023).

O.V.: Was ist TCP (Transmission Control Protocol)? - Definition von WhatIs.com,
ComputerWeekly.de, in: https://www.computerweekly.com/de/definition/TCP-Transmission-
Control-Protocol (Zugriff am 22.2.2023).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

141

O.V. (2023): ArduinoBLE, .

O.V.: about-ble-server-profile-20-1024.jpg (1024×768), in:
https://image.slidesharecdn.com/nordicframeworkserver-131016111555-phpapp02/95/about-
ble-server-profile-20-1024.jpg?cb=1381922171 (Zugriff am 15.3.2023).

O.V.: Introduction to Bluetooth Low Energy, Adafruit Learning System, in:
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt (Zugriff am 15.3.2023).

O.V.: Galvanische Trennung - was ist das?, in:
https://www.elektrikervergleich.ch/ratgeber/galvanische-trennung-was-ist-das-c:225500
(Zugriff am 16.3.2023).

O.V. (2023): ESP-IDF VS Code Extension, .

O.V. (2023): Arduino_ESP32_OTA, .

O.V.: ESP8266 – Mikrocontroller.net, in: https://www.mikrocontroller.net/articles/ESP8266
(Zugriff am 18.3.2023).

O.V.: ESP32-S3-DevKitC-1 v1.1 - ESP32-S3 - — ESP-IDF Programming Guide latest
documentation, in: https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/hw-
reference/esp32s3/user-guide-devkitc-1.html (Zugriff am 18.3.2023).

O.V.: Relais • Was ist ein Relais? Wie funktioniert ein Relais?, Studyflix, in:
https://studyflix.de/elektrotechnik/relais-5057 (Zugriff am 18.3.2023).

O.V.: OSI-Schichtenmodell, in: https://www.elektronik-
kompendium.de/sites/kom/0301201.htm (Zugriff am 18.3.2023).

O.V.: SPI - Arduino Reference, in:
https://www.arduino.cc/reference/en/language/functions/communication/spi/ (Zugriff am
19.3.2023).

O.V.: JTAG Debugging - ESP32-S3 - — ESP-IDF Programming Guide latest documentation,
in: https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/api-guides/jtag-
debugging/index.html (Zugriff am 19.3.2023).

O.V.: Get Started - ESP32 - — ESP-IDF Programming Guide latest documentation, in:
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html (Zugriff am
19.3.2023).

O.V.: IoT Development Framework I Espressif Systems, in:
https://www.espressif.com/en/products/sdks/esp-idf (Zugriff am 19.3.2023).

O.V.: Downloading and installing the Arduino IDE 2.0 | Arduino Documentation, in:
https://docs.arduino.cc/software/ide-v2/tutorials/getting-started/ide-v2-downloading-and-
installing (Zugriff am 19.3.2023).

O.V.: Elektrotechnische Normung in Österreich, in: https://www.ove.at/ove-
standardization/elektrotechnische-normung-oesterreich/ (Zugriff am 27.3.2023).

O.V.: WiPy 3.0, in: https://docs.pycom.io/datasheets/development/wipy3/ (Zugriff am
27.3.2023).

O.V.: TMP126NDCKR Texas Instruments | Mouser, Mouser Electronics, in:
https://www.mouser.at/ProductDetail/595-TMP126NDCKR (Zugriff am 27.3.2023).

DA|2023 | AGX | Universeller intelligenter Wandschalter | KICKER & KLAPPER Seite

142

O.V.: 3-1393215-5 . - Leistungsrelais, SPDT, 5 VDC, 8 A, V23057, Durchsteckmontage, in:
https://at.farnell.com/schrack-te-connectivity/3-1393215-5/leistungsrelais-spdt-5vdc-8a-
tht/dp/2974811 (Zugriff am 27.3.2023).

O.V.: Sicheres und effizientes Schalten von Strom oder Spannung mit Hilfe von
Halbleiterrelais, Digi-Key Electronics, in: https://www.digikey.at/de/articles/how-to-safely-and-
efficiently-switch-current-or-voltage-using-ssrs (Zugriff am 28.3.2023).

O.V.: Arduino & Serial Peripheral Interface (SPI) | Arduino Documentation, in:
https://docs.arduino.cc/learn/communication/spi (Zugriff am 29.3.2023).

O.V.: Online UUID Generator Tool, in: https://www.uuidgenerator.net/ (Zugriff am 29.3.2023).

Ramel, B. D./09/29/2022: Did .NET MAUI Ship Too Soon? Devs Sound Off on „Massive
Mistake“ -, Visual Studio Magazine, in:
https://visualstudiomagazine.com/articles/2022/09/29/net-maui-complaints.aspx (Zugriff am
17.2.2023).

REghZy (2023): The Dark Theme app, .

StephenWalther (2022): Understanding Models, Views, and Controllers (C#), in:
https://learn.microsoft.com/en-us/aspnet/mvc/overview/older-versions-
1/overview/understanding-models-views-and-controllers-cs (Zugriff am 16.2.2023).

Strahl, C. M., EPS Software Corp ,. Rick: Getting
to the ASP.NET Core, in: https://www.codemag.com/article/1609071/Getting-to-the-
ASP.NET-Core (Zugriff am 19.3.2023).

ThePip: pip: The PyPA recommended tool for installing Python packages., .

Unixtime.org: Unix TimeStamp - Epoch Converter - TimeStamp Converter, in:
https://unixtime.org (Zugriff am 9.2.2023).

Velimirovic, A. (2020): What is YAML? Explained With Examples, phoenixNAP Blog, in:
https://phoenixnap.com/blog/what-is-yaml-with-examples (Zugriff am 9.2.2023).

